Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect
With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there wer...
Ausführliche Beschreibung
Autor*in: |
Long, Canghai [verfasserIn] Li, Libo [verfasserIn] Zhai, Mo [verfasserIn] Shan, Yuhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of physics and chemistry of solids - New York, NY [u.a.] : Elsevier, 1956, 134, Seite 255-261 |
---|---|
Übergeordnetes Werk: |
volume:134 ; pages:255-261 |
DOI / URN: |
10.1016/j.jpcs.2019.06.017 |
---|
Katalog-ID: |
ELV002629437 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002629437 | ||
003 | DE-627 | ||
005 | 20230524141717.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpcs.2019.06.017 |2 doi | |
035 | |a (DE-627)ELV002629437 | ||
035 | |a (ELSEVIER)S0022-3697(19)30611-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 540 |q DE-600 |
084 | |a 33.60 |2 bkl | ||
084 | |a 35.90 |2 bkl | ||
100 | 1 | |a Long, Canghai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there were some main challenges stemming from the polysulphide dissolution and the high flammability of the sulfur which limited the further application of the lithium sulfur Li–S batteries. Here, we reported a facile method to prepare the quasi solid-state Li–S batteries (LSBs) with sulfur nanoparticles electrode and PVDF-based solid polymer electrolyte (SPE), which had less flammability, electrochemical stability and ionic conductivity. The prepared PVDF-based solid polymer electrolyte possessed the conductivity ∼10−4 S cm−1 at 25 °C and the lithium ions transference number of 0.49. GITT demonstrated the Li+ transport diffusion mechanism in the active Snano-TiO2 cathode of the quasi solid-state lithium–sulfur battery. It was important to get the smooth diffusion path for the lower resistance in the charging process. Because of the high content and the sulfur uniform distribution on the nanoscale titanium dioxide (TiO2), the S@nano-TiO2 cathode exhibited its performance. The first cycle discahrge specific capacity was 1160 mAh g−1 at 0.15C at room temperature. | ||
650 | 4 | |a Solid-state | |
650 | 4 | |a Incombustibility | |
650 | 4 | |a GITT | |
650 | 4 | |a Li | |
650 | 4 | |a Shuttle effect | |
700 | 1 | |a Li, Libo |e verfasserin |4 aut | |
700 | 1 | |a Zhai, Mo |e verfasserin |4 aut | |
700 | 1 | |a Shan, Yuhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of physics and chemistry of solids |d New York, NY [u.a.] : Elsevier, 1956 |g 134, Seite 255-261 |h Online-Ressource |w (DE-627)302718915 |w (DE-600)1491914-X |w (DE-576)094950334 |7 nnns |
773 | 1 | 8 | |g volume:134 |g pages:255-261 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.60 |j Kondensierte Materie: Allgemeines |
936 | b | k | |a 35.90 |j Festkörperchemie |
951 | |a AR | ||
952 | |d 134 |h 255-261 |
author_variant |
c l cl l l ll m z mz y s ys |
---|---|
matchkey_str |
longcanghaililibozhaimoshanyuhang:2019----:aierprtoadlcrceityefracoqaioisaeoyeltimufratrw |
hierarchy_sort_str |
2019 |
bklnumber |
33.60 35.90 |
publishDate |
2019 |
allfields |
10.1016/j.jpcs.2019.06.017 doi (DE-627)ELV002629437 (ELSEVIER)S0022-3697(19)30611-0 DE-627 ger DE-627 rda eng 530 540 DE-600 33.60 bkl 35.90 bkl Long, Canghai verfasserin aut Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there were some main challenges stemming from the polysulphide dissolution and the high flammability of the sulfur which limited the further application of the lithium sulfur Li–S batteries. Here, we reported a facile method to prepare the quasi solid-state Li–S batteries (LSBs) with sulfur nanoparticles electrode and PVDF-based solid polymer electrolyte (SPE), which had less flammability, electrochemical stability and ionic conductivity. The prepared PVDF-based solid polymer electrolyte possessed the conductivity ∼10−4 S cm−1 at 25 °C and the lithium ions transference number of 0.49. GITT demonstrated the Li+ transport diffusion mechanism in the active Snano-TiO2 cathode of the quasi solid-state lithium–sulfur battery. It was important to get the smooth diffusion path for the lower resistance in the charging process. Because of the high content and the sulfur uniform distribution on the nanoscale titanium dioxide (TiO2), the S@nano-TiO2 cathode exhibited its performance. The first cycle discahrge specific capacity was 1160 mAh g−1 at 0.15C at room temperature. Solid-state Incombustibility GITT Li Shuttle effect Li, Libo verfasserin aut Zhai, Mo verfasserin aut Shan, Yuhang verfasserin aut Enthalten in Journal of physics and chemistry of solids New York, NY [u.a.] : Elsevier, 1956 134, Seite 255-261 Online-Ressource (DE-627)302718915 (DE-600)1491914-X (DE-576)094950334 nnns volume:134 pages:255-261 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.60 Kondensierte Materie: Allgemeines 35.90 Festkörperchemie AR 134 255-261 |
spelling |
10.1016/j.jpcs.2019.06.017 doi (DE-627)ELV002629437 (ELSEVIER)S0022-3697(19)30611-0 DE-627 ger DE-627 rda eng 530 540 DE-600 33.60 bkl 35.90 bkl Long, Canghai verfasserin aut Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there were some main challenges stemming from the polysulphide dissolution and the high flammability of the sulfur which limited the further application of the lithium sulfur Li–S batteries. Here, we reported a facile method to prepare the quasi solid-state Li–S batteries (LSBs) with sulfur nanoparticles electrode and PVDF-based solid polymer electrolyte (SPE), which had less flammability, electrochemical stability and ionic conductivity. The prepared PVDF-based solid polymer electrolyte possessed the conductivity ∼10−4 S cm−1 at 25 °C and the lithium ions transference number of 0.49. GITT demonstrated the Li+ transport diffusion mechanism in the active Snano-TiO2 cathode of the quasi solid-state lithium–sulfur battery. It was important to get the smooth diffusion path for the lower resistance in the charging process. Because of the high content and the sulfur uniform distribution on the nanoscale titanium dioxide (TiO2), the S@nano-TiO2 cathode exhibited its performance. The first cycle discahrge specific capacity was 1160 mAh g−1 at 0.15C at room temperature. Solid-state Incombustibility GITT Li Shuttle effect Li, Libo verfasserin aut Zhai, Mo verfasserin aut Shan, Yuhang verfasserin aut Enthalten in Journal of physics and chemistry of solids New York, NY [u.a.] : Elsevier, 1956 134, Seite 255-261 Online-Ressource (DE-627)302718915 (DE-600)1491914-X (DE-576)094950334 nnns volume:134 pages:255-261 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.60 Kondensierte Materie: Allgemeines 35.90 Festkörperchemie AR 134 255-261 |
allfields_unstemmed |
10.1016/j.jpcs.2019.06.017 doi (DE-627)ELV002629437 (ELSEVIER)S0022-3697(19)30611-0 DE-627 ger DE-627 rda eng 530 540 DE-600 33.60 bkl 35.90 bkl Long, Canghai verfasserin aut Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there were some main challenges stemming from the polysulphide dissolution and the high flammability of the sulfur which limited the further application of the lithium sulfur Li–S batteries. Here, we reported a facile method to prepare the quasi solid-state Li–S batteries (LSBs) with sulfur nanoparticles electrode and PVDF-based solid polymer electrolyte (SPE), which had less flammability, electrochemical stability and ionic conductivity. The prepared PVDF-based solid polymer electrolyte possessed the conductivity ∼10−4 S cm−1 at 25 °C and the lithium ions transference number of 0.49. GITT demonstrated the Li+ transport diffusion mechanism in the active Snano-TiO2 cathode of the quasi solid-state lithium–sulfur battery. It was important to get the smooth diffusion path for the lower resistance in the charging process. Because of the high content and the sulfur uniform distribution on the nanoscale titanium dioxide (TiO2), the S@nano-TiO2 cathode exhibited its performance. The first cycle discahrge specific capacity was 1160 mAh g−1 at 0.15C at room temperature. Solid-state Incombustibility GITT Li Shuttle effect Li, Libo verfasserin aut Zhai, Mo verfasserin aut Shan, Yuhang verfasserin aut Enthalten in Journal of physics and chemistry of solids New York, NY [u.a.] : Elsevier, 1956 134, Seite 255-261 Online-Ressource (DE-627)302718915 (DE-600)1491914-X (DE-576)094950334 nnns volume:134 pages:255-261 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.60 Kondensierte Materie: Allgemeines 35.90 Festkörperchemie AR 134 255-261 |
allfieldsGer |
10.1016/j.jpcs.2019.06.017 doi (DE-627)ELV002629437 (ELSEVIER)S0022-3697(19)30611-0 DE-627 ger DE-627 rda eng 530 540 DE-600 33.60 bkl 35.90 bkl Long, Canghai verfasserin aut Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there were some main challenges stemming from the polysulphide dissolution and the high flammability of the sulfur which limited the further application of the lithium sulfur Li–S batteries. Here, we reported a facile method to prepare the quasi solid-state Li–S batteries (LSBs) with sulfur nanoparticles electrode and PVDF-based solid polymer electrolyte (SPE), which had less flammability, electrochemical stability and ionic conductivity. The prepared PVDF-based solid polymer electrolyte possessed the conductivity ∼10−4 S cm−1 at 25 °C and the lithium ions transference number of 0.49. GITT demonstrated the Li+ transport diffusion mechanism in the active Snano-TiO2 cathode of the quasi solid-state lithium–sulfur battery. It was important to get the smooth diffusion path for the lower resistance in the charging process. Because of the high content and the sulfur uniform distribution on the nanoscale titanium dioxide (TiO2), the S@nano-TiO2 cathode exhibited its performance. The first cycle discahrge specific capacity was 1160 mAh g−1 at 0.15C at room temperature. Solid-state Incombustibility GITT Li Shuttle effect Li, Libo verfasserin aut Zhai, Mo verfasserin aut Shan, Yuhang verfasserin aut Enthalten in Journal of physics and chemistry of solids New York, NY [u.a.] : Elsevier, 1956 134, Seite 255-261 Online-Ressource (DE-627)302718915 (DE-600)1491914-X (DE-576)094950334 nnns volume:134 pages:255-261 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.60 Kondensierte Materie: Allgemeines 35.90 Festkörperchemie AR 134 255-261 |
allfieldsSound |
10.1016/j.jpcs.2019.06.017 doi (DE-627)ELV002629437 (ELSEVIER)S0022-3697(19)30611-0 DE-627 ger DE-627 rda eng 530 540 DE-600 33.60 bkl 35.90 bkl Long, Canghai verfasserin aut Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there were some main challenges stemming from the polysulphide dissolution and the high flammability of the sulfur which limited the further application of the lithium sulfur Li–S batteries. Here, we reported a facile method to prepare the quasi solid-state Li–S batteries (LSBs) with sulfur nanoparticles electrode and PVDF-based solid polymer electrolyte (SPE), which had less flammability, electrochemical stability and ionic conductivity. The prepared PVDF-based solid polymer electrolyte possessed the conductivity ∼10−4 S cm−1 at 25 °C and the lithium ions transference number of 0.49. GITT demonstrated the Li+ transport diffusion mechanism in the active Snano-TiO2 cathode of the quasi solid-state lithium–sulfur battery. It was important to get the smooth diffusion path for the lower resistance in the charging process. Because of the high content and the sulfur uniform distribution on the nanoscale titanium dioxide (TiO2), the S@nano-TiO2 cathode exhibited its performance. The first cycle discahrge specific capacity was 1160 mAh g−1 at 0.15C at room temperature. Solid-state Incombustibility GITT Li Shuttle effect Li, Libo verfasserin aut Zhai, Mo verfasserin aut Shan, Yuhang verfasserin aut Enthalten in Journal of physics and chemistry of solids New York, NY [u.a.] : Elsevier, 1956 134, Seite 255-261 Online-Ressource (DE-627)302718915 (DE-600)1491914-X (DE-576)094950334 nnns volume:134 pages:255-261 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.60 Kondensierte Materie: Allgemeines 35.90 Festkörperchemie AR 134 255-261 |
language |
English |
source |
Enthalten in Journal of physics and chemistry of solids 134, Seite 255-261 volume:134 pages:255-261 |
sourceStr |
Enthalten in Journal of physics and chemistry of solids 134, Seite 255-261 volume:134 pages:255-261 |
format_phy_str_mv |
Article |
bklname |
Kondensierte Materie: Allgemeines Festkörperchemie |
institution |
findex.gbv.de |
topic_facet |
Solid-state Incombustibility GITT Li Shuttle effect |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of physics and chemistry of solids |
authorswithroles_txt_mv |
Long, Canghai @@aut@@ Li, Libo @@aut@@ Zhai, Mo @@aut@@ Shan, Yuhang @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
302718915 |
dewey-sort |
3530 |
id |
ELV002629437 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002629437</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524141717.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpcs.2019.06.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002629437</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-3697(19)30611-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Long, Canghai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there were some main challenges stemming from the polysulphide dissolution and the high flammability of the sulfur which limited the further application of the lithium sulfur Li–S batteries. Here, we reported a facile method to prepare the quasi solid-state Li–S batteries (LSBs) with sulfur nanoparticles electrode and PVDF-based solid polymer electrolyte (SPE), which had less flammability, electrochemical stability and ionic conductivity. The prepared PVDF-based solid polymer electrolyte possessed the conductivity ∼10−4 S cm−1 at 25 °C and the lithium ions transference number of 0.49. GITT demonstrated the Li+ transport diffusion mechanism in the active Snano-TiO2 cathode of the quasi solid-state lithium–sulfur battery. It was important to get the smooth diffusion path for the lower resistance in the charging process. Because of the high content and the sulfur uniform distribution on the nanoscale titanium dioxide (TiO2), the S@nano-TiO2 cathode exhibited its performance. The first cycle discahrge specific capacity was 1160 mAh g−1 at 0.15C at room temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid-state</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incombustibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GITT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Li</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shuttle effect</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Libo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Mo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shan, Yuhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of physics and chemistry of solids</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1956</subfield><subfield code="g">134, Seite 255-261</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302718915</subfield><subfield code="w">(DE-600)1491914-X</subfield><subfield code="w">(DE-576)094950334</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:134</subfield><subfield code="g">pages:255-261</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.60</subfield><subfield code="j">Kondensierte Materie: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">134</subfield><subfield code="h">255-261</subfield></datafield></record></collection>
|
author |
Long, Canghai |
spellingShingle |
Long, Canghai ddc 530 bkl 33.60 bkl 35.90 misc Solid-state misc Incombustibility misc GITT misc Li misc Shuttle effect Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect |
authorStr |
Long, Canghai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302718915 |
format |
electronic Article |
dewey-ones |
530 - Physics 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 540 DE-600 33.60 bkl 35.90 bkl Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect Solid-state Incombustibility GITT Li Shuttle effect |
topic |
ddc 530 bkl 33.60 bkl 35.90 misc Solid-state misc Incombustibility misc GITT misc Li misc Shuttle effect |
topic_unstemmed |
ddc 530 bkl 33.60 bkl 35.90 misc Solid-state misc Incombustibility misc GITT misc Li misc Shuttle effect |
topic_browse |
ddc 530 bkl 33.60 bkl 35.90 misc Solid-state misc Incombustibility misc GITT misc Li misc Shuttle effect |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of physics and chemistry of solids |
hierarchy_parent_id |
302718915 |
dewey-tens |
530 - Physics 540 - Chemistry |
hierarchy_top_title |
Journal of physics and chemistry of solids |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302718915 (DE-600)1491914-X (DE-576)094950334 |
title |
Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect |
ctrlnum |
(DE-627)ELV002629437 (ELSEVIER)S0022-3697(19)30611-0 |
title_full |
Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect |
author_sort |
Long, Canghai |
journal |
Journal of physics and chemistry of solids |
journalStr |
Journal of physics and chemistry of solids |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
255 |
author_browse |
Long, Canghai Li, Libo Zhai, Mo Shan, Yuhang |
container_volume |
134 |
class |
530 540 DE-600 33.60 bkl 35.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Long, Canghai |
doi_str_mv |
10.1016/j.jpcs.2019.06.017 |
dewey-full |
530 540 |
author2-role |
verfasserin |
title_sort |
facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect |
title_auth |
Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect |
abstract |
With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there were some main challenges stemming from the polysulphide dissolution and the high flammability of the sulfur which limited the further application of the lithium sulfur Li–S batteries. Here, we reported a facile method to prepare the quasi solid-state Li–S batteries (LSBs) with sulfur nanoparticles electrode and PVDF-based solid polymer electrolyte (SPE), which had less flammability, electrochemical stability and ionic conductivity. The prepared PVDF-based solid polymer electrolyte possessed the conductivity ∼10−4 S cm−1 at 25 °C and the lithium ions transference number of 0.49. GITT demonstrated the Li+ transport diffusion mechanism in the active Snano-TiO2 cathode of the quasi solid-state lithium–sulfur battery. It was important to get the smooth diffusion path for the lower resistance in the charging process. Because of the high content and the sulfur uniform distribution on the nanoscale titanium dioxide (TiO2), the S@nano-TiO2 cathode exhibited its performance. The first cycle discahrge specific capacity was 1160 mAh g−1 at 0.15C at room temperature. |
abstractGer |
With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there were some main challenges stemming from the polysulphide dissolution and the high flammability of the sulfur which limited the further application of the lithium sulfur Li–S batteries. Here, we reported a facile method to prepare the quasi solid-state Li–S batteries (LSBs) with sulfur nanoparticles electrode and PVDF-based solid polymer electrolyte (SPE), which had less flammability, electrochemical stability and ionic conductivity. The prepared PVDF-based solid polymer electrolyte possessed the conductivity ∼10−4 S cm−1 at 25 °C and the lithium ions transference number of 0.49. GITT demonstrated the Li+ transport diffusion mechanism in the active Snano-TiO2 cathode of the quasi solid-state lithium–sulfur battery. It was important to get the smooth diffusion path for the lower resistance in the charging process. Because of the high content and the sulfur uniform distribution on the nanoscale titanium dioxide (TiO2), the S@nano-TiO2 cathode exhibited its performance. The first cycle discahrge specific capacity was 1160 mAh g−1 at 0.15C at room temperature. |
abstract_unstemmed |
With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there were some main challenges stemming from the polysulphide dissolution and the high flammability of the sulfur which limited the further application of the lithium sulfur Li–S batteries. Here, we reported a facile method to prepare the quasi solid-state Li–S batteries (LSBs) with sulfur nanoparticles electrode and PVDF-based solid polymer electrolyte (SPE), which had less flammability, electrochemical stability and ionic conductivity. The prepared PVDF-based solid polymer electrolyte possessed the conductivity ∼10−4 S cm−1 at 25 °C and the lithium ions transference number of 0.49. GITT demonstrated the Li+ transport diffusion mechanism in the active Snano-TiO2 cathode of the quasi solid-state lithium–sulfur battery. It was important to get the smooth diffusion path for the lower resistance in the charging process. Because of the high content and the sulfur uniform distribution on the nanoscale titanium dioxide (TiO2), the S@nano-TiO2 cathode exhibited its performance. The first cycle discahrge specific capacity was 1160 mAh g−1 at 0.15C at room temperature. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect |
remote_bool |
true |
author2 |
Li, Libo Zhai, Mo Shan, Yuhang |
author2Str |
Li, Libo Zhai, Mo Shan, Yuhang |
ppnlink |
302718915 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jpcs.2019.06.017 |
up_date |
2024-07-06T16:55:05.323Z |
_version_ |
1803849464887115776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002629437</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524141717.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpcs.2019.06.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002629437</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-3697(19)30611-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Long, Canghai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With a higher theoretical energy density relative to Li ion batteries (LIBs) and abundance of elemental sulfur, the lithium sulfur (L-S) batteries were regarded as the promising next-generation high energy density storage devices for the protable electronics and electric vehicles. However, there were some main challenges stemming from the polysulphide dissolution and the high flammability of the sulfur which limited the further application of the lithium sulfur Li–S batteries. Here, we reported a facile method to prepare the quasi solid-state Li–S batteries (LSBs) with sulfur nanoparticles electrode and PVDF-based solid polymer electrolyte (SPE), which had less flammability, electrochemical stability and ionic conductivity. The prepared PVDF-based solid polymer electrolyte possessed the conductivity ∼10−4 S cm−1 at 25 °C and the lithium ions transference number of 0.49. GITT demonstrated the Li+ transport diffusion mechanism in the active Snano-TiO2 cathode of the quasi solid-state lithium–sulfur battery. It was important to get the smooth diffusion path for the lower resistance in the charging process. Because of the high content and the sulfur uniform distribution on the nanoscale titanium dioxide (TiO2), the S@nano-TiO2 cathode exhibited its performance. The first cycle discahrge specific capacity was 1160 mAh g−1 at 0.15C at room temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid-state</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incombustibility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GITT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Li</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shuttle effect</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Libo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Mo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shan, Yuhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of physics and chemistry of solids</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1956</subfield><subfield code="g">134, Seite 255-261</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302718915</subfield><subfield code="w">(DE-600)1491914-X</subfield><subfield code="w">(DE-576)094950334</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:134</subfield><subfield code="g">pages:255-261</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.60</subfield><subfield code="j">Kondensierte Materie: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">134</subfield><subfield code="h">255-261</subfield></datafield></record></collection>
|
score |
7.399214 |