Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections
Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of...
Ausführliche Beschreibung
Autor*in: |
Yan, Fei [verfasserIn] Goverde, Rob M.P. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Transportation research / B - Amsterdam [u.a.] : Elsevier, 1979, 127, Seite 20-46 |
---|---|
Übergeordnetes Werk: |
volume:127 ; pages:20-46 |
DOI / URN: |
10.1016/j.trb.2019.06.010 |
---|
Katalog-ID: |
ELV002686171 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002686171 | ||
003 | DE-627 | ||
005 | 20231205154811.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230429s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.trb.2019.06.010 |2 doi | |
035 | |a (DE-627)ELV002686171 | ||
035 | |a (ELSEVIER)S0191-2615(17)31179-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 380 |q DE-600 |
084 | |a 55.80 |2 bkl | ||
100 | 1 | |a Yan, Fei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of a high-level service quality for railway operation. In this paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are introduced for direct connections, with consideration of both periodic and aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss of train operating companies. A combined LPP and TTP method is designed considering timetable robustness, timetable regularity, and passenger travel time. For a given line pool, a multi-objective mixed integer linear programming model for the MF-LPP is formulated to obtain a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and the number of lines. Using the acquired line plan from the previous step, a MP-TTP model is proposed to achieve the minimal travel time, the maximal timetable robustness and the minimal number of overtakings. The two models work iteratively with designed feedback constraints to find a better plan for the rail transport system. Numerical experiments are applied to verify the performance of the proposed model and solution approach. | ||
650 | 4 | |a Line planning | |
650 | 4 | |a Multi-frequency | |
650 | 4 | |a Train timetabling | |
650 | 4 | |a Multi-period | |
700 | 1 | |a Goverde, Rob M.P. |e verfasserin |0 (orcid)0000-0001-8840-4488 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Transportation research / B |d Amsterdam [u.a.] : Elsevier, 1979 |g 127, Seite 20-46 |h Online-Ressource |w (DE-627)306714914 |w (DE-600)1501221-9 |w (DE-576)099210851 |x 1879-2367 |7 nnns |
773 | 1 | 8 | |g volume:127 |g pages:20-46 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 55.80 |j Verkehrswesen |j Transportwesen: Allgemeines |
951 | |a AR | ||
952 | |d 127 |h 20-46 |
author_variant |
f y fy r m g rm rmg |
---|---|
matchkey_str |
article:18792367:2019----::obndielnigntaniealnfrtogyeeoeeuriwyi |
hierarchy_sort_str |
2019 |
bklnumber |
55.80 |
publishDate |
2019 |
allfields |
10.1016/j.trb.2019.06.010 doi (DE-627)ELV002686171 (ELSEVIER)S0191-2615(17)31179-7 DE-627 ger DE-627 rda eng 380 DE-600 55.80 bkl Yan, Fei verfasserin aut Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of a high-level service quality for railway operation. In this paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are introduced for direct connections, with consideration of both periodic and aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss of train operating companies. A combined LPP and TTP method is designed considering timetable robustness, timetable regularity, and passenger travel time. For a given line pool, a multi-objective mixed integer linear programming model for the MF-LPP is formulated to obtain a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and the number of lines. Using the acquired line plan from the previous step, a MP-TTP model is proposed to achieve the minimal travel time, the maximal timetable robustness and the minimal number of overtakings. The two models work iteratively with designed feedback constraints to find a better plan for the rail transport system. Numerical experiments are applied to verify the performance of the proposed model and solution approach. Line planning Multi-frequency Train timetabling Multi-period Goverde, Rob M.P. verfasserin (orcid)0000-0001-8840-4488 aut Enthalten in Transportation research / B Amsterdam [u.a.] : Elsevier, 1979 127, Seite 20-46 Online-Ressource (DE-627)306714914 (DE-600)1501221-9 (DE-576)099210851 1879-2367 nnns volume:127 pages:20-46 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 55.80 Verkehrswesen Transportwesen: Allgemeines AR 127 20-46 |
spelling |
10.1016/j.trb.2019.06.010 doi (DE-627)ELV002686171 (ELSEVIER)S0191-2615(17)31179-7 DE-627 ger DE-627 rda eng 380 DE-600 55.80 bkl Yan, Fei verfasserin aut Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of a high-level service quality for railway operation. In this paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are introduced for direct connections, with consideration of both periodic and aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss of train operating companies. A combined LPP and TTP method is designed considering timetable robustness, timetable regularity, and passenger travel time. For a given line pool, a multi-objective mixed integer linear programming model for the MF-LPP is formulated to obtain a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and the number of lines. Using the acquired line plan from the previous step, a MP-TTP model is proposed to achieve the minimal travel time, the maximal timetable robustness and the minimal number of overtakings. The two models work iteratively with designed feedback constraints to find a better plan for the rail transport system. Numerical experiments are applied to verify the performance of the proposed model and solution approach. Line planning Multi-frequency Train timetabling Multi-period Goverde, Rob M.P. verfasserin (orcid)0000-0001-8840-4488 aut Enthalten in Transportation research / B Amsterdam [u.a.] : Elsevier, 1979 127, Seite 20-46 Online-Ressource (DE-627)306714914 (DE-600)1501221-9 (DE-576)099210851 1879-2367 nnns volume:127 pages:20-46 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 55.80 Verkehrswesen Transportwesen: Allgemeines AR 127 20-46 |
allfields_unstemmed |
10.1016/j.trb.2019.06.010 doi (DE-627)ELV002686171 (ELSEVIER)S0191-2615(17)31179-7 DE-627 ger DE-627 rda eng 380 DE-600 55.80 bkl Yan, Fei verfasserin aut Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of a high-level service quality for railway operation. In this paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are introduced for direct connections, with consideration of both periodic and aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss of train operating companies. A combined LPP and TTP method is designed considering timetable robustness, timetable regularity, and passenger travel time. For a given line pool, a multi-objective mixed integer linear programming model for the MF-LPP is formulated to obtain a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and the number of lines. Using the acquired line plan from the previous step, a MP-TTP model is proposed to achieve the minimal travel time, the maximal timetable robustness and the minimal number of overtakings. The two models work iteratively with designed feedback constraints to find a better plan for the rail transport system. Numerical experiments are applied to verify the performance of the proposed model and solution approach. Line planning Multi-frequency Train timetabling Multi-period Goverde, Rob M.P. verfasserin (orcid)0000-0001-8840-4488 aut Enthalten in Transportation research / B Amsterdam [u.a.] : Elsevier, 1979 127, Seite 20-46 Online-Ressource (DE-627)306714914 (DE-600)1501221-9 (DE-576)099210851 1879-2367 nnns volume:127 pages:20-46 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 55.80 Verkehrswesen Transportwesen: Allgemeines AR 127 20-46 |
allfieldsGer |
10.1016/j.trb.2019.06.010 doi (DE-627)ELV002686171 (ELSEVIER)S0191-2615(17)31179-7 DE-627 ger DE-627 rda eng 380 DE-600 55.80 bkl Yan, Fei verfasserin aut Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of a high-level service quality for railway operation. In this paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are introduced for direct connections, with consideration of both periodic and aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss of train operating companies. A combined LPP and TTP method is designed considering timetable robustness, timetable regularity, and passenger travel time. For a given line pool, a multi-objective mixed integer linear programming model for the MF-LPP is formulated to obtain a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and the number of lines. Using the acquired line plan from the previous step, a MP-TTP model is proposed to achieve the minimal travel time, the maximal timetable robustness and the minimal number of overtakings. The two models work iteratively with designed feedback constraints to find a better plan for the rail transport system. Numerical experiments are applied to verify the performance of the proposed model and solution approach. Line planning Multi-frequency Train timetabling Multi-period Goverde, Rob M.P. verfasserin (orcid)0000-0001-8840-4488 aut Enthalten in Transportation research / B Amsterdam [u.a.] : Elsevier, 1979 127, Seite 20-46 Online-Ressource (DE-627)306714914 (DE-600)1501221-9 (DE-576)099210851 1879-2367 nnns volume:127 pages:20-46 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 55.80 Verkehrswesen Transportwesen: Allgemeines AR 127 20-46 |
allfieldsSound |
10.1016/j.trb.2019.06.010 doi (DE-627)ELV002686171 (ELSEVIER)S0191-2615(17)31179-7 DE-627 ger DE-627 rda eng 380 DE-600 55.80 bkl Yan, Fei verfasserin aut Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of a high-level service quality for railway operation. In this paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are introduced for direct connections, with consideration of both periodic and aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss of train operating companies. A combined LPP and TTP method is designed considering timetable robustness, timetable regularity, and passenger travel time. For a given line pool, a multi-objective mixed integer linear programming model for the MF-LPP is formulated to obtain a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and the number of lines. Using the acquired line plan from the previous step, a MP-TTP model is proposed to achieve the minimal travel time, the maximal timetable robustness and the minimal number of overtakings. The two models work iteratively with designed feedback constraints to find a better plan for the rail transport system. Numerical experiments are applied to verify the performance of the proposed model and solution approach. Line planning Multi-frequency Train timetabling Multi-period Goverde, Rob M.P. verfasserin (orcid)0000-0001-8840-4488 aut Enthalten in Transportation research / B Amsterdam [u.a.] : Elsevier, 1979 127, Seite 20-46 Online-Ressource (DE-627)306714914 (DE-600)1501221-9 (DE-576)099210851 1879-2367 nnns volume:127 pages:20-46 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 55.80 Verkehrswesen Transportwesen: Allgemeines AR 127 20-46 |
language |
English |
source |
Enthalten in Transportation research / B 127, Seite 20-46 volume:127 pages:20-46 |
sourceStr |
Enthalten in Transportation research / B 127, Seite 20-46 volume:127 pages:20-46 |
format_phy_str_mv |
Article |
bklname |
Verkehrswesen Transportwesen: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Line planning Multi-frequency Train timetabling Multi-period |
dewey-raw |
380 |
isfreeaccess_bool |
false |
container_title |
Transportation research / B |
authorswithroles_txt_mv |
Yan, Fei @@aut@@ Goverde, Rob M.P. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
306714914 |
dewey-sort |
3380 |
id |
ELV002686171 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002686171</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154811.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.trb.2019.06.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002686171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0191-2615(17)31179-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yan, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of a high-level service quality for railway operation. In this paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are introduced for direct connections, with consideration of both periodic and aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss of train operating companies. A combined LPP and TTP method is designed considering timetable robustness, timetable regularity, and passenger travel time. For a given line pool, a multi-objective mixed integer linear programming model for the MF-LPP is formulated to obtain a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and the number of lines. Using the acquired line plan from the previous step, a MP-TTP model is proposed to achieve the minimal travel time, the maximal timetable robustness and the minimal number of overtakings. The two models work iteratively with designed feedback constraints to find a better plan for the rail transport system. Numerical experiments are applied to verify the performance of the proposed model and solution approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Line planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Train timetabling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-period</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goverde, Rob M.P.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8840-4488</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transportation research / B</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1979</subfield><subfield code="g">127, Seite 20-46</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306714914</subfield><subfield code="w">(DE-600)1501221-9</subfield><subfield code="w">(DE-576)099210851</subfield><subfield code="x">1879-2367</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:127</subfield><subfield code="g">pages:20-46</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.80</subfield><subfield code="j">Verkehrswesen</subfield><subfield code="j">Transportwesen: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">127</subfield><subfield code="h">20-46</subfield></datafield></record></collection>
|
author |
Yan, Fei |
spellingShingle |
Yan, Fei ddc 380 bkl 55.80 misc Line planning misc Multi-frequency misc Train timetabling misc Multi-period Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections |
authorStr |
Yan, Fei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306714914 |
format |
electronic Article |
dewey-ones |
380 - Commerce, communications & transportation |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2367 |
topic_title |
380 DE-600 55.80 bkl Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections Line planning Multi-frequency Train timetabling Multi-period |
topic |
ddc 380 bkl 55.80 misc Line planning misc Multi-frequency misc Train timetabling misc Multi-period |
topic_unstemmed |
ddc 380 bkl 55.80 misc Line planning misc Multi-frequency misc Train timetabling misc Multi-period |
topic_browse |
ddc 380 bkl 55.80 misc Line planning misc Multi-frequency misc Train timetabling misc Multi-period |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Transportation research / B |
hierarchy_parent_id |
306714914 |
dewey-tens |
380 - Commerce, communications & transportation |
hierarchy_top_title |
Transportation research / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306714914 (DE-600)1501221-9 (DE-576)099210851 |
title |
Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections |
ctrlnum |
(DE-627)ELV002686171 (ELSEVIER)S0191-2615(17)31179-7 |
title_full |
Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections |
author_sort |
Yan, Fei |
journal |
Transportation research / B |
journalStr |
Transportation research / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
20 |
author_browse |
Yan, Fei Goverde, Rob M.P. |
container_volume |
127 |
class |
380 DE-600 55.80 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yan, Fei |
doi_str_mv |
10.1016/j.trb.2019.06.010 |
normlink |
(ORCID)0000-0001-8840-4488 |
normlink_prefix_str_mv |
(orcid)0000-0001-8840-4488 |
dewey-full |
380 |
author2-role |
verfasserin |
title_sort |
combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections |
title_auth |
Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections |
abstract |
Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of a high-level service quality for railway operation. In this paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are introduced for direct connections, with consideration of both periodic and aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss of train operating companies. A combined LPP and TTP method is designed considering timetable robustness, timetable regularity, and passenger travel time. For a given line pool, a multi-objective mixed integer linear programming model for the MF-LPP is formulated to obtain a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and the number of lines. Using the acquired line plan from the previous step, a MP-TTP model is proposed to achieve the minimal travel time, the maximal timetable robustness and the minimal number of overtakings. The two models work iteratively with designed feedback constraints to find a better plan for the rail transport system. Numerical experiments are applied to verify the performance of the proposed model and solution approach. |
abstractGer |
Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of a high-level service quality for railway operation. In this paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are introduced for direct connections, with consideration of both periodic and aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss of train operating companies. A combined LPP and TTP method is designed considering timetable robustness, timetable regularity, and passenger travel time. For a given line pool, a multi-objective mixed integer linear programming model for the MF-LPP is formulated to obtain a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and the number of lines. Using the acquired line plan from the previous step, a MP-TTP model is proposed to achieve the minimal travel time, the maximal timetable robustness and the minimal number of overtakings. The two models work iteratively with designed feedback constraints to find a better plan for the rail transport system. Numerical experiments are applied to verify the performance of the proposed model and solution approach. |
abstract_unstemmed |
Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of a high-level service quality for railway operation. In this paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are introduced for direct connections, with consideration of both periodic and aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss of train operating companies. A combined LPP and TTP method is designed considering timetable robustness, timetable regularity, and passenger travel time. For a given line pool, a multi-objective mixed integer linear programming model for the MF-LPP is formulated to obtain a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and the number of lines. Using the acquired line plan from the previous step, a MP-TTP model is proposed to achieve the minimal travel time, the maximal timetable robustness and the minimal number of overtakings. The two models work iteratively with designed feedback constraints to find a better plan for the rail transport system. Numerical experiments are applied to verify the performance of the proposed model and solution approach. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections |
remote_bool |
true |
author2 |
Goverde, Rob M.P. |
author2Str |
Goverde, Rob M.P. |
ppnlink |
306714914 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.trb.2019.06.010 |
up_date |
2024-07-06T17:06:33.062Z |
_version_ |
1803850186033725440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002686171</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154811.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230429s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.trb.2019.06.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002686171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0191-2615(17)31179-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yan, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rail systems have been developing rapidly in recent years aiming at satisfying the growing passenger demand and shortening passenger travel time. The line planning problem (LPP) and train timetabling problem (TTP) are two key issues at the strategic level and tactical level, laying the foundation of a high-level service quality for railway operation. In this paper, a multi-frequency LPP (MF-LPP) model and a multi-period TTP (MP-TTP) model are introduced for direct connections, with consideration of both periodic and aperiodic nature to meet strongly heterogeneous train services and reduce the capacity loss of train operating companies. A combined LPP and TTP method is designed considering timetable robustness, timetable regularity, and passenger travel time. For a given line pool, a multi-objective mixed integer linear programming model for the MF-LPP is formulated to obtain a line plan with multiple line frequencies by minimizing travel time, empty-seat-hour and the number of lines. Using the acquired line plan from the previous step, a MP-TTP model is proposed to achieve the minimal travel time, the maximal timetable robustness and the minimal number of overtakings. The two models work iteratively with designed feedback constraints to find a better plan for the rail transport system. Numerical experiments are applied to verify the performance of the proposed model and solution approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Line planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Train timetabling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-period</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goverde, Rob M.P.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8840-4488</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transportation research / B</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1979</subfield><subfield code="g">127, Seite 20-46</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306714914</subfield><subfield code="w">(DE-600)1501221-9</subfield><subfield code="w">(DE-576)099210851</subfield><subfield code="x">1879-2367</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:127</subfield><subfield code="g">pages:20-46</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.80</subfield><subfield code="j">Verkehrswesen</subfield><subfield code="j">Transportwesen: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">127</subfield><subfield code="h">20-46</subfield></datafield></record></collection>
|
score |
7.402874 |