Distance-based vertex identification in graphs: The outer multiset dimension
The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a g...
Ausführliche Beschreibung
Autor*in: |
Gil-Pons, Reynaldo [verfasserIn] Ramírez-Cruz, Yunior [verfasserIn] Trujillo-Rasua, Rolando [verfasserIn] Yero, Ismael G. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied mathematics and computation - New York, NY : Elsevier, 1975, 363 |
---|---|
Übergeordnetes Werk: |
volume:363 |
DOI / URN: |
10.1016/j.amc.2019.124612 |
---|
Katalog-ID: |
ELV002805391 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002805391 | ||
003 | DE-627 | ||
005 | 20230524162511.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.amc.2019.124612 |2 doi | |
035 | |a (DE-627)ELV002805391 | ||
035 | |a (ELSEVIER)S0096-3003(19)30604-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.80 |2 bkl | ||
084 | |a 31.76 |2 bkl | ||
100 | 1 | |a Gil-Pons, Reynaldo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Distance-based vertex identification in graphs: The outer multiset dimension |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a graph G and a subset of vertices S = { w 1 , … , w t } ⊆ V ( G ) , the multiset representationof a vertex u ∈ V(G) with respect to S is the multiset m ( u | S ) = { | d G ( u , w 1 ) , … , d G ( u , w t ) | } . A subset of vertices S such that m ( u | S ) = m ( v | S ) ⇔ u = v for every u, v ∈ V(G)∖S is said to be a multiset resolving set, and the cardinality of the smallest such set is the outer multiset dimension. We study the general behaviour of the outer multiset dimension, and determine its exact value for several graph families. We also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and provide methods for efficiently handling particular cases. | ||
650 | 4 | |a Resolvability | |
650 | 4 | |a Privacy | |
650 | 4 | |a Resolving set | |
650 | 4 | |a Multiset resolving set | |
650 | 4 | |a Metric dimension | |
650 | 4 | |a Outer multiset dimension | |
700 | 1 | |a Ramírez-Cruz, Yunior |e verfasserin |4 aut | |
700 | 1 | |a Trujillo-Rasua, Rolando |e verfasserin |0 (orcid)0000-0002-8714-4626 |4 aut | |
700 | 1 | |a Yero, Ismael G. |e verfasserin |0 (orcid)0000-0002-1619-1572 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied mathematics and computation |d New York, NY : Elsevier, 1975 |g 363 |h Online-Ressource |w (DE-627)26555022X |w (DE-600)1465428-3 |w (DE-576)078314976 |7 nnns |
773 | 1 | 8 | |g volume:363 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 31.80 |j Angewandte Mathematik |
936 | b | k | |a 31.76 |j Numerische Mathematik |
951 | |a AR | ||
952 | |d 363 |
author_variant |
r g p rgp y r c yrc r t r rtr i g y ig igy |
---|---|
matchkey_str |
gilponsreynaldoramrezcruzyuniortrujillor:2019----:itneaevreietfctoigahteue |
hierarchy_sort_str |
2019 |
bklnumber |
31.80 31.76 |
publishDate |
2019 |
allfields |
10.1016/j.amc.2019.124612 doi (DE-627)ELV002805391 (ELSEVIER)S0096-3003(19)30604-6 DE-627 ger DE-627 rda eng 510 DE-600 31.80 bkl 31.76 bkl Gil-Pons, Reynaldo verfasserin aut Distance-based vertex identification in graphs: The outer multiset dimension 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a graph G and a subset of vertices S = { w 1 , … , w t } ⊆ V ( G ) , the multiset representationof a vertex u ∈ V(G) with respect to S is the multiset m ( u | S ) = { | d G ( u , w 1 ) , … , d G ( u , w t ) | } . A subset of vertices S such that m ( u | S ) = m ( v | S ) ⇔ u = v for every u, v ∈ V(G)∖S is said to be a multiset resolving set, and the cardinality of the smallest such set is the outer multiset dimension. We study the general behaviour of the outer multiset dimension, and determine its exact value for several graph families. We also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and provide methods for efficiently handling particular cases. Resolvability Privacy Resolving set Multiset resolving set Metric dimension Outer multiset dimension Ramírez-Cruz, Yunior verfasserin aut Trujillo-Rasua, Rolando verfasserin (orcid)0000-0002-8714-4626 aut Yero, Ismael G. verfasserin (orcid)0000-0002-1619-1572 aut Enthalten in Applied mathematics and computation New York, NY : Elsevier, 1975 363 Online-Ressource (DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 nnns volume:363 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.80 Angewandte Mathematik 31.76 Numerische Mathematik AR 363 |
spelling |
10.1016/j.amc.2019.124612 doi (DE-627)ELV002805391 (ELSEVIER)S0096-3003(19)30604-6 DE-627 ger DE-627 rda eng 510 DE-600 31.80 bkl 31.76 bkl Gil-Pons, Reynaldo verfasserin aut Distance-based vertex identification in graphs: The outer multiset dimension 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a graph G and a subset of vertices S = { w 1 , … , w t } ⊆ V ( G ) , the multiset representationof a vertex u ∈ V(G) with respect to S is the multiset m ( u | S ) = { | d G ( u , w 1 ) , … , d G ( u , w t ) | } . A subset of vertices S such that m ( u | S ) = m ( v | S ) ⇔ u = v for every u, v ∈ V(G)∖S is said to be a multiset resolving set, and the cardinality of the smallest such set is the outer multiset dimension. We study the general behaviour of the outer multiset dimension, and determine its exact value for several graph families. We also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and provide methods for efficiently handling particular cases. Resolvability Privacy Resolving set Multiset resolving set Metric dimension Outer multiset dimension Ramírez-Cruz, Yunior verfasserin aut Trujillo-Rasua, Rolando verfasserin (orcid)0000-0002-8714-4626 aut Yero, Ismael G. verfasserin (orcid)0000-0002-1619-1572 aut Enthalten in Applied mathematics and computation New York, NY : Elsevier, 1975 363 Online-Ressource (DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 nnns volume:363 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.80 Angewandte Mathematik 31.76 Numerische Mathematik AR 363 |
allfields_unstemmed |
10.1016/j.amc.2019.124612 doi (DE-627)ELV002805391 (ELSEVIER)S0096-3003(19)30604-6 DE-627 ger DE-627 rda eng 510 DE-600 31.80 bkl 31.76 bkl Gil-Pons, Reynaldo verfasserin aut Distance-based vertex identification in graphs: The outer multiset dimension 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a graph G and a subset of vertices S = { w 1 , … , w t } ⊆ V ( G ) , the multiset representationof a vertex u ∈ V(G) with respect to S is the multiset m ( u | S ) = { | d G ( u , w 1 ) , … , d G ( u , w t ) | } . A subset of vertices S such that m ( u | S ) = m ( v | S ) ⇔ u = v for every u, v ∈ V(G)∖S is said to be a multiset resolving set, and the cardinality of the smallest such set is the outer multiset dimension. We study the general behaviour of the outer multiset dimension, and determine its exact value for several graph families. We also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and provide methods for efficiently handling particular cases. Resolvability Privacy Resolving set Multiset resolving set Metric dimension Outer multiset dimension Ramírez-Cruz, Yunior verfasserin aut Trujillo-Rasua, Rolando verfasserin (orcid)0000-0002-8714-4626 aut Yero, Ismael G. verfasserin (orcid)0000-0002-1619-1572 aut Enthalten in Applied mathematics and computation New York, NY : Elsevier, 1975 363 Online-Ressource (DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 nnns volume:363 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.80 Angewandte Mathematik 31.76 Numerische Mathematik AR 363 |
allfieldsGer |
10.1016/j.amc.2019.124612 doi (DE-627)ELV002805391 (ELSEVIER)S0096-3003(19)30604-6 DE-627 ger DE-627 rda eng 510 DE-600 31.80 bkl 31.76 bkl Gil-Pons, Reynaldo verfasserin aut Distance-based vertex identification in graphs: The outer multiset dimension 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a graph G and a subset of vertices S = { w 1 , … , w t } ⊆ V ( G ) , the multiset representationof a vertex u ∈ V(G) with respect to S is the multiset m ( u | S ) = { | d G ( u , w 1 ) , … , d G ( u , w t ) | } . A subset of vertices S such that m ( u | S ) = m ( v | S ) ⇔ u = v for every u, v ∈ V(G)∖S is said to be a multiset resolving set, and the cardinality of the smallest such set is the outer multiset dimension. We study the general behaviour of the outer multiset dimension, and determine its exact value for several graph families. We also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and provide methods for efficiently handling particular cases. Resolvability Privacy Resolving set Multiset resolving set Metric dimension Outer multiset dimension Ramírez-Cruz, Yunior verfasserin aut Trujillo-Rasua, Rolando verfasserin (orcid)0000-0002-8714-4626 aut Yero, Ismael G. verfasserin (orcid)0000-0002-1619-1572 aut Enthalten in Applied mathematics and computation New York, NY : Elsevier, 1975 363 Online-Ressource (DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 nnns volume:363 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.80 Angewandte Mathematik 31.76 Numerische Mathematik AR 363 |
allfieldsSound |
10.1016/j.amc.2019.124612 doi (DE-627)ELV002805391 (ELSEVIER)S0096-3003(19)30604-6 DE-627 ger DE-627 rda eng 510 DE-600 31.80 bkl 31.76 bkl Gil-Pons, Reynaldo verfasserin aut Distance-based vertex identification in graphs: The outer multiset dimension 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a graph G and a subset of vertices S = { w 1 , … , w t } ⊆ V ( G ) , the multiset representationof a vertex u ∈ V(G) with respect to S is the multiset m ( u | S ) = { | d G ( u , w 1 ) , … , d G ( u , w t ) | } . A subset of vertices S such that m ( u | S ) = m ( v | S ) ⇔ u = v for every u, v ∈ V(G)∖S is said to be a multiset resolving set, and the cardinality of the smallest such set is the outer multiset dimension. We study the general behaviour of the outer multiset dimension, and determine its exact value for several graph families. We also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and provide methods for efficiently handling particular cases. Resolvability Privacy Resolving set Multiset resolving set Metric dimension Outer multiset dimension Ramírez-Cruz, Yunior verfasserin aut Trujillo-Rasua, Rolando verfasserin (orcid)0000-0002-8714-4626 aut Yero, Ismael G. verfasserin (orcid)0000-0002-1619-1572 aut Enthalten in Applied mathematics and computation New York, NY : Elsevier, 1975 363 Online-Ressource (DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 nnns volume:363 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.80 Angewandte Mathematik 31.76 Numerische Mathematik AR 363 |
language |
English |
source |
Enthalten in Applied mathematics and computation 363 volume:363 |
sourceStr |
Enthalten in Applied mathematics and computation 363 volume:363 |
format_phy_str_mv |
Article |
bklname |
Angewandte Mathematik Numerische Mathematik |
institution |
findex.gbv.de |
topic_facet |
Resolvability Privacy Resolving set Multiset resolving set Metric dimension Outer multiset dimension |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applied mathematics and computation |
authorswithroles_txt_mv |
Gil-Pons, Reynaldo @@aut@@ Ramírez-Cruz, Yunior @@aut@@ Trujillo-Rasua, Rolando @@aut@@ Yero, Ismael G. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
26555022X |
dewey-sort |
3510 |
id |
ELV002805391 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002805391</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162511.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.amc.2019.124612</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002805391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0096-3003(19)30604-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gil-Pons, Reynaldo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distance-based vertex identification in graphs: The outer multiset dimension</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a graph G and a subset of vertices S = { w 1 , … , w t } ⊆ V ( G ) , the multiset representationof a vertex u ∈ V(G) with respect to S is the multiset m ( u | S ) = { | d G ( u , w 1 ) , … , d G ( u , w t ) | } . A subset of vertices S such that m ( u | S ) = m ( v | S ) ⇔ u = v for every u, v ∈ V(G)∖S is said to be a multiset resolving set, and the cardinality of the smallest such set is the outer multiset dimension. We study the general behaviour of the outer multiset dimension, and determine its exact value for several graph families. We also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and provide methods for efficiently handling particular cases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolvability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Privacy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolving set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiset resolving set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Outer multiset dimension</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramírez-Cruz, Yunior</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trujillo-Rasua, Rolando</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8714-4626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yero, Ismael G.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1619-1572</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics and computation</subfield><subfield code="d">New York, NY : Elsevier, 1975</subfield><subfield code="g">363</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)26555022X</subfield><subfield code="w">(DE-600)1465428-3</subfield><subfield code="w">(DE-576)078314976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:363</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.76</subfield><subfield code="j">Numerische Mathematik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">363</subfield></datafield></record></collection>
|
author |
Gil-Pons, Reynaldo |
spellingShingle |
Gil-Pons, Reynaldo ddc 510 bkl 31.80 bkl 31.76 misc Resolvability misc Privacy misc Resolving set misc Multiset resolving set misc Metric dimension misc Outer multiset dimension Distance-based vertex identification in graphs: The outer multiset dimension |
authorStr |
Gil-Pons, Reynaldo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)26555022X |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 DE-600 31.80 bkl 31.76 bkl Distance-based vertex identification in graphs: The outer multiset dimension Resolvability Privacy Resolving set Multiset resolving set Metric dimension Outer multiset dimension |
topic |
ddc 510 bkl 31.80 bkl 31.76 misc Resolvability misc Privacy misc Resolving set misc Multiset resolving set misc Metric dimension misc Outer multiset dimension |
topic_unstemmed |
ddc 510 bkl 31.80 bkl 31.76 misc Resolvability misc Privacy misc Resolving set misc Multiset resolving set misc Metric dimension misc Outer multiset dimension |
topic_browse |
ddc 510 bkl 31.80 bkl 31.76 misc Resolvability misc Privacy misc Resolving set misc Multiset resolving set misc Metric dimension misc Outer multiset dimension |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied mathematics and computation |
hierarchy_parent_id |
26555022X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Applied mathematics and computation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 |
title |
Distance-based vertex identification in graphs: The outer multiset dimension |
ctrlnum |
(DE-627)ELV002805391 (ELSEVIER)S0096-3003(19)30604-6 |
title_full |
Distance-based vertex identification in graphs: The outer multiset dimension |
author_sort |
Gil-Pons, Reynaldo |
journal |
Applied mathematics and computation |
journalStr |
Applied mathematics and computation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Gil-Pons, Reynaldo Ramírez-Cruz, Yunior Trujillo-Rasua, Rolando Yero, Ismael G. |
container_volume |
363 |
class |
510 DE-600 31.80 bkl 31.76 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gil-Pons, Reynaldo |
doi_str_mv |
10.1016/j.amc.2019.124612 |
normlink |
(ORCID)0000-0002-8714-4626 (ORCID)0000-0002-1619-1572 |
normlink_prefix_str_mv |
(orcid)0000-0002-8714-4626 (orcid)0000-0002-1619-1572 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
distance-based vertex identification in graphs: the outer multiset dimension |
title_auth |
Distance-based vertex identification in graphs: The outer multiset dimension |
abstract |
The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a graph G and a subset of vertices S = { w 1 , … , w t } ⊆ V ( G ) , the multiset representationof a vertex u ∈ V(G) with respect to S is the multiset m ( u | S ) = { | d G ( u , w 1 ) , … , d G ( u , w t ) | } . A subset of vertices S such that m ( u | S ) = m ( v | S ) ⇔ u = v for every u, v ∈ V(G)∖S is said to be a multiset resolving set, and the cardinality of the smallest such set is the outer multiset dimension. We study the general behaviour of the outer multiset dimension, and determine its exact value for several graph families. We also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and provide methods for efficiently handling particular cases. |
abstractGer |
The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a graph G and a subset of vertices S = { w 1 , … , w t } ⊆ V ( G ) , the multiset representationof a vertex u ∈ V(G) with respect to S is the multiset m ( u | S ) = { | d G ( u , w 1 ) , … , d G ( u , w t ) | } . A subset of vertices S such that m ( u | S ) = m ( v | S ) ⇔ u = v for every u, v ∈ V(G)∖S is said to be a multiset resolving set, and the cardinality of the smallest such set is the outer multiset dimension. We study the general behaviour of the outer multiset dimension, and determine its exact value for several graph families. We also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and provide methods for efficiently handling particular cases. |
abstract_unstemmed |
The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a graph G and a subset of vertices S = { w 1 , … , w t } ⊆ V ( G ) , the multiset representationof a vertex u ∈ V(G) with respect to S is the multiset m ( u | S ) = { | d G ( u , w 1 ) , … , d G ( u , w t ) | } . A subset of vertices S such that m ( u | S ) = m ( v | S ) ⇔ u = v for every u, v ∈ V(G)∖S is said to be a multiset resolving set, and the cardinality of the smallest such set is the outer multiset dimension. We study the general behaviour of the outer multiset dimension, and determine its exact value for several graph families. We also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and provide methods for efficiently handling particular cases. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Distance-based vertex identification in graphs: The outer multiset dimension |
remote_bool |
true |
author2 |
Ramírez-Cruz, Yunior Trujillo-Rasua, Rolando Yero, Ismael G. |
author2Str |
Ramírez-Cruz, Yunior Trujillo-Rasua, Rolando Yero, Ismael G. |
ppnlink |
26555022X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.amc.2019.124612 |
up_date |
2024-07-06T17:30:41.873Z |
_version_ |
1803851705222168576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002805391</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162511.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.amc.2019.124612</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002805391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0096-3003(19)30604-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gil-Pons, Reynaldo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distance-based vertex identification in graphs: The outer multiset dimension</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The characterisation of vertices in a network, in relation to other peers, has been used as a primitive in many computational procedures, such as node localisation and (de-)anonymisation. This article focuses on a characterisation type known as the multiset metric representation. Formally, given a graph G and a subset of vertices S = { w 1 , … , w t } ⊆ V ( G ) , the multiset representationof a vertex u ∈ V(G) with respect to S is the multiset m ( u | S ) = { | d G ( u , w 1 ) , … , d G ( u , w t ) | } . A subset of vertices S such that m ( u | S ) = m ( v | S ) ⇔ u = v for every u, v ∈ V(G)∖S is said to be a multiset resolving set, and the cardinality of the smallest such set is the outer multiset dimension. We study the general behaviour of the outer multiset dimension, and determine its exact value for several graph families. We also show that computing the outer multiset dimension of arbitrary graphs is NP-hard, and provide methods for efficiently handling particular cases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolvability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Privacy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolving set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiset resolving set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Outer multiset dimension</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramírez-Cruz, Yunior</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trujillo-Rasua, Rolando</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8714-4626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yero, Ismael G.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1619-1572</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics and computation</subfield><subfield code="d">New York, NY : Elsevier, 1975</subfield><subfield code="g">363</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)26555022X</subfield><subfield code="w">(DE-600)1465428-3</subfield><subfield code="w">(DE-576)078314976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:363</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.76</subfield><subfield code="j">Numerische Mathematik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">363</subfield></datafield></record></collection>
|
score |
7.4002256 |