A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations
A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point...
Ausführliche Beschreibung
Autor*in: |
Kutniv, M.V. [verfasserIn] Datsko, B.Y. [verfasserIn] Kunynets, A.V. [verfasserIn] Włoch, A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Nonlinear ordinary differential equation |
---|
Übergeordnetes Werk: |
Enthalten in: Applied numerical mathematics - Amsterdam [u.a.] : Elsevier, 1985, 148, Seite 140-151 |
---|---|
Übergeordnetes Werk: |
volume:148 ; pages:140-151 |
DOI / URN: |
10.1016/j.apnum.2019.09.006 |
---|
Katalog-ID: |
ELV002973286 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002973286 | ||
003 | DE-627 | ||
005 | 20230524160038.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.apnum.2019.09.006 |2 doi | |
035 | |a (DE-627)ELV002973286 | ||
035 | |a (ELSEVIER)S0168-9274(19)30245-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.76 |2 bkl | ||
100 | 1 | |a Kutniv, M.V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point x = 0 is proposed. Using the substitution of the independent variable x = e t , we reduce the original initial value problem to the one on the interval ( − ∞ , ln a ] . On some finite irregular grid { t n ∈ ( − ∞ , ln a ] , n = 0 , 1 , . . . , N , t N = ln a } Taylor series and Runge-Kutta methods for this problem have been developed. For finding of an approximate solution at the grid node t 0 , new one-step methods have been constructed. For finding of the solution at other grid nodes, the standard one-step methods have been used. An algorithm for the automatic generation of a grid which guarantees the prescribed accuracy is presented. The effectiveness of presented approach is illustrated by a set of numerical examples. The applicability of the constructed method to systems of singular differential equations is shown. | ||
650 | 4 | |a Nonlinear ordinary differential equation | |
650 | 4 | |a Singular initial value problem | |
650 | 4 | |a Taylor series method | |
650 | 4 | |a Runge-Kutta methods | |
700 | 1 | |a Datsko, B.Y. |e verfasserin |4 aut | |
700 | 1 | |a Kunynets, A.V. |e verfasserin |4 aut | |
700 | 1 | |a Włoch, A. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied numerical mathematics |d Amsterdam [u.a.] : Elsevier, 1985 |g 148, Seite 140-151 |h Online-Ressource |w (DE-627)266888879 |w (DE-600)1468770-7 |w (DE-576)075962314 |7 nnns |
773 | 1 | 8 | |g volume:148 |g pages:140-151 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 31.76 |j Numerische Mathematik |
951 | |a AR | ||
952 | |d 148 |h 140-151 |
author_variant |
m k mk b d bd a k ak a w aw |
---|---|
matchkey_str |
kutnivmvdatskobykunynetsavwocha:2019----:nwprahoosrcigfxlctnsemtosfihrefriglrntavlerbesonn |
hierarchy_sort_str |
2019 |
bklnumber |
31.76 |
publishDate |
2019 |
allfields |
10.1016/j.apnum.2019.09.006 doi (DE-627)ELV002973286 (ELSEVIER)S0168-9274(19)30245-4 DE-627 ger DE-627 rda eng 510 DE-600 31.76 bkl Kutniv, M.V. verfasserin aut A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point x = 0 is proposed. Using the substitution of the independent variable x = e t , we reduce the original initial value problem to the one on the interval ( − ∞ , ln a ] . On some finite irregular grid { t n ∈ ( − ∞ , ln a ] , n = 0 , 1 , . . . , N , t N = ln a } Taylor series and Runge-Kutta methods for this problem have been developed. For finding of an approximate solution at the grid node t 0 , new one-step methods have been constructed. For finding of the solution at other grid nodes, the standard one-step methods have been used. An algorithm for the automatic generation of a grid which guarantees the prescribed accuracy is presented. The effectiveness of presented approach is illustrated by a set of numerical examples. The applicability of the constructed method to systems of singular differential equations is shown. Nonlinear ordinary differential equation Singular initial value problem Taylor series method Runge-Kutta methods Datsko, B.Y. verfasserin aut Kunynets, A.V. verfasserin aut Włoch, A. verfasserin aut Enthalten in Applied numerical mathematics Amsterdam [u.a.] : Elsevier, 1985 148, Seite 140-151 Online-Ressource (DE-627)266888879 (DE-600)1468770-7 (DE-576)075962314 nnns volume:148 pages:140-151 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.76 Numerische Mathematik AR 148 140-151 |
spelling |
10.1016/j.apnum.2019.09.006 doi (DE-627)ELV002973286 (ELSEVIER)S0168-9274(19)30245-4 DE-627 ger DE-627 rda eng 510 DE-600 31.76 bkl Kutniv, M.V. verfasserin aut A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point x = 0 is proposed. Using the substitution of the independent variable x = e t , we reduce the original initial value problem to the one on the interval ( − ∞ , ln a ] . On some finite irregular grid { t n ∈ ( − ∞ , ln a ] , n = 0 , 1 , . . . , N , t N = ln a } Taylor series and Runge-Kutta methods for this problem have been developed. For finding of an approximate solution at the grid node t 0 , new one-step methods have been constructed. For finding of the solution at other grid nodes, the standard one-step methods have been used. An algorithm for the automatic generation of a grid which guarantees the prescribed accuracy is presented. The effectiveness of presented approach is illustrated by a set of numerical examples. The applicability of the constructed method to systems of singular differential equations is shown. Nonlinear ordinary differential equation Singular initial value problem Taylor series method Runge-Kutta methods Datsko, B.Y. verfasserin aut Kunynets, A.V. verfasserin aut Włoch, A. verfasserin aut Enthalten in Applied numerical mathematics Amsterdam [u.a.] : Elsevier, 1985 148, Seite 140-151 Online-Ressource (DE-627)266888879 (DE-600)1468770-7 (DE-576)075962314 nnns volume:148 pages:140-151 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.76 Numerische Mathematik AR 148 140-151 |
allfields_unstemmed |
10.1016/j.apnum.2019.09.006 doi (DE-627)ELV002973286 (ELSEVIER)S0168-9274(19)30245-4 DE-627 ger DE-627 rda eng 510 DE-600 31.76 bkl Kutniv, M.V. verfasserin aut A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point x = 0 is proposed. Using the substitution of the independent variable x = e t , we reduce the original initial value problem to the one on the interval ( − ∞ , ln a ] . On some finite irregular grid { t n ∈ ( − ∞ , ln a ] , n = 0 , 1 , . . . , N , t N = ln a } Taylor series and Runge-Kutta methods for this problem have been developed. For finding of an approximate solution at the grid node t 0 , new one-step methods have been constructed. For finding of the solution at other grid nodes, the standard one-step methods have been used. An algorithm for the automatic generation of a grid which guarantees the prescribed accuracy is presented. The effectiveness of presented approach is illustrated by a set of numerical examples. The applicability of the constructed method to systems of singular differential equations is shown. Nonlinear ordinary differential equation Singular initial value problem Taylor series method Runge-Kutta methods Datsko, B.Y. verfasserin aut Kunynets, A.V. verfasserin aut Włoch, A. verfasserin aut Enthalten in Applied numerical mathematics Amsterdam [u.a.] : Elsevier, 1985 148, Seite 140-151 Online-Ressource (DE-627)266888879 (DE-600)1468770-7 (DE-576)075962314 nnns volume:148 pages:140-151 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.76 Numerische Mathematik AR 148 140-151 |
allfieldsGer |
10.1016/j.apnum.2019.09.006 doi (DE-627)ELV002973286 (ELSEVIER)S0168-9274(19)30245-4 DE-627 ger DE-627 rda eng 510 DE-600 31.76 bkl Kutniv, M.V. verfasserin aut A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point x = 0 is proposed. Using the substitution of the independent variable x = e t , we reduce the original initial value problem to the one on the interval ( − ∞ , ln a ] . On some finite irregular grid { t n ∈ ( − ∞ , ln a ] , n = 0 , 1 , . . . , N , t N = ln a } Taylor series and Runge-Kutta methods for this problem have been developed. For finding of an approximate solution at the grid node t 0 , new one-step methods have been constructed. For finding of the solution at other grid nodes, the standard one-step methods have been used. An algorithm for the automatic generation of a grid which guarantees the prescribed accuracy is presented. The effectiveness of presented approach is illustrated by a set of numerical examples. The applicability of the constructed method to systems of singular differential equations is shown. Nonlinear ordinary differential equation Singular initial value problem Taylor series method Runge-Kutta methods Datsko, B.Y. verfasserin aut Kunynets, A.V. verfasserin aut Włoch, A. verfasserin aut Enthalten in Applied numerical mathematics Amsterdam [u.a.] : Elsevier, 1985 148, Seite 140-151 Online-Ressource (DE-627)266888879 (DE-600)1468770-7 (DE-576)075962314 nnns volume:148 pages:140-151 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.76 Numerische Mathematik AR 148 140-151 |
allfieldsSound |
10.1016/j.apnum.2019.09.006 doi (DE-627)ELV002973286 (ELSEVIER)S0168-9274(19)30245-4 DE-627 ger DE-627 rda eng 510 DE-600 31.76 bkl Kutniv, M.V. verfasserin aut A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point x = 0 is proposed. Using the substitution of the independent variable x = e t , we reduce the original initial value problem to the one on the interval ( − ∞ , ln a ] . On some finite irregular grid { t n ∈ ( − ∞ , ln a ] , n = 0 , 1 , . . . , N , t N = ln a } Taylor series and Runge-Kutta methods for this problem have been developed. For finding of an approximate solution at the grid node t 0 , new one-step methods have been constructed. For finding of the solution at other grid nodes, the standard one-step methods have been used. An algorithm for the automatic generation of a grid which guarantees the prescribed accuracy is presented. The effectiveness of presented approach is illustrated by a set of numerical examples. The applicability of the constructed method to systems of singular differential equations is shown. Nonlinear ordinary differential equation Singular initial value problem Taylor series method Runge-Kutta methods Datsko, B.Y. verfasserin aut Kunynets, A.V. verfasserin aut Włoch, A. verfasserin aut Enthalten in Applied numerical mathematics Amsterdam [u.a.] : Elsevier, 1985 148, Seite 140-151 Online-Ressource (DE-627)266888879 (DE-600)1468770-7 (DE-576)075962314 nnns volume:148 pages:140-151 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.76 Numerische Mathematik AR 148 140-151 |
language |
English |
source |
Enthalten in Applied numerical mathematics 148, Seite 140-151 volume:148 pages:140-151 |
sourceStr |
Enthalten in Applied numerical mathematics 148, Seite 140-151 volume:148 pages:140-151 |
format_phy_str_mv |
Article |
bklname |
Numerische Mathematik |
institution |
findex.gbv.de |
topic_facet |
Nonlinear ordinary differential equation Singular initial value problem Taylor series method Runge-Kutta methods |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applied numerical mathematics |
authorswithroles_txt_mv |
Kutniv, M.V. @@aut@@ Datsko, B.Y. @@aut@@ Kunynets, A.V. @@aut@@ Włoch, A. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
266888879 |
dewey-sort |
3510 |
id |
ELV002973286 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002973286</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160038.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apnum.2019.09.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002973286</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9274(19)30245-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kutniv, M.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point x = 0 is proposed. Using the substitution of the independent variable x = e t , we reduce the original initial value problem to the one on the interval ( − ∞ , ln a ] . On some finite irregular grid { t n ∈ ( − ∞ , ln a ] , n = 0 , 1 , . . . , N , t N = ln a } Taylor series and Runge-Kutta methods for this problem have been developed. For finding of an approximate solution at the grid node t 0 , new one-step methods have been constructed. For finding of the solution at other grid nodes, the standard one-step methods have been used. An algorithm for the automatic generation of a grid which guarantees the prescribed accuracy is presented. The effectiveness of presented approach is illustrated by a set of numerical examples. The applicability of the constructed method to systems of singular differential equations is shown.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear ordinary differential equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular initial value problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor series method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Datsko, B.Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kunynets, A.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Włoch, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied numerical mathematics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1985</subfield><subfield code="g">148, Seite 140-151</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266888879</subfield><subfield code="w">(DE-600)1468770-7</subfield><subfield code="w">(DE-576)075962314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:148</subfield><subfield code="g">pages:140-151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.76</subfield><subfield code="j">Numerische Mathematik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">148</subfield><subfield code="h">140-151</subfield></datafield></record></collection>
|
author |
Kutniv, M.V. |
spellingShingle |
Kutniv, M.V. ddc 510 bkl 31.76 misc Nonlinear ordinary differential equation misc Singular initial value problem misc Taylor series method misc Runge-Kutta methods A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations |
authorStr |
Kutniv, M.V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266888879 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 DE-600 31.76 bkl A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations Nonlinear ordinary differential equation Singular initial value problem Taylor series method Runge-Kutta methods |
topic |
ddc 510 bkl 31.76 misc Nonlinear ordinary differential equation misc Singular initial value problem misc Taylor series method misc Runge-Kutta methods |
topic_unstemmed |
ddc 510 bkl 31.76 misc Nonlinear ordinary differential equation misc Singular initial value problem misc Taylor series method misc Runge-Kutta methods |
topic_browse |
ddc 510 bkl 31.76 misc Nonlinear ordinary differential equation misc Singular initial value problem misc Taylor series method misc Runge-Kutta methods |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied numerical mathematics |
hierarchy_parent_id |
266888879 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Applied numerical mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266888879 (DE-600)1468770-7 (DE-576)075962314 |
title |
A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations |
ctrlnum |
(DE-627)ELV002973286 (ELSEVIER)S0168-9274(19)30245-4 |
title_full |
A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations |
author_sort |
Kutniv, M.V. |
journal |
Applied numerical mathematics |
journalStr |
Applied numerical mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
140 |
author_browse |
Kutniv, M.V. Datsko, B.Y. Kunynets, A.V. Włoch, A. |
container_volume |
148 |
class |
510 DE-600 31.76 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kutniv, M.V. |
doi_str_mv |
10.1016/j.apnum.2019.09.006 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
a new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations |
title_auth |
A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations |
abstract |
A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point x = 0 is proposed. Using the substitution of the independent variable x = e t , we reduce the original initial value problem to the one on the interval ( − ∞ , ln a ] . On some finite irregular grid { t n ∈ ( − ∞ , ln a ] , n = 0 , 1 , . . . , N , t N = ln a } Taylor series and Runge-Kutta methods for this problem have been developed. For finding of an approximate solution at the grid node t 0 , new one-step methods have been constructed. For finding of the solution at other grid nodes, the standard one-step methods have been used. An algorithm for the automatic generation of a grid which guarantees the prescribed accuracy is presented. The effectiveness of presented approach is illustrated by a set of numerical examples. The applicability of the constructed method to systems of singular differential equations is shown. |
abstractGer |
A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point x = 0 is proposed. Using the substitution of the independent variable x = e t , we reduce the original initial value problem to the one on the interval ( − ∞ , ln a ] . On some finite irregular grid { t n ∈ ( − ∞ , ln a ] , n = 0 , 1 , . . . , N , t N = ln a } Taylor series and Runge-Kutta methods for this problem have been developed. For finding of an approximate solution at the grid node t 0 , new one-step methods have been constructed. For finding of the solution at other grid nodes, the standard one-step methods have been used. An algorithm for the automatic generation of a grid which guarantees the prescribed accuracy is presented. The effectiveness of presented approach is illustrated by a set of numerical examples. The applicability of the constructed method to systems of singular differential equations is shown. |
abstract_unstemmed |
A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point x = 0 is proposed. Using the substitution of the independent variable x = e t , we reduce the original initial value problem to the one on the interval ( − ∞ , ln a ] . On some finite irregular grid { t n ∈ ( − ∞ , ln a ] , n = 0 , 1 , . . . , N , t N = ln a } Taylor series and Runge-Kutta methods for this problem have been developed. For finding of an approximate solution at the grid node t 0 , new one-step methods have been constructed. For finding of the solution at other grid nodes, the standard one-step methods have been used. An algorithm for the automatic generation of a grid which guarantees the prescribed accuracy is presented. The effectiveness of presented approach is illustrated by a set of numerical examples. The applicability of the constructed method to systems of singular differential equations is shown. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations |
remote_bool |
true |
author2 |
Datsko, B.Y. Kunynets, A.V. Włoch, A. |
author2Str |
Datsko, B.Y. Kunynets, A.V. Włoch, A. |
ppnlink |
266888879 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.apnum.2019.09.006 |
up_date |
2024-07-06T18:04:19.816Z |
_version_ |
1803853821187719169 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002973286</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160038.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apnum.2019.09.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002973286</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9274(19)30245-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kutniv, M.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new approach to constructing of explicit one-step methods of high order for singular initial value problems for nonlinear ordinary differential equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new approach to construction of one-step numerical methods of high order for the initial value problems on the interval [ 0 , a ] with a singularity of the first kind in the point x = 0 is proposed. Using the substitution of the independent variable x = e t , we reduce the original initial value problem to the one on the interval ( − ∞ , ln a ] . On some finite irregular grid { t n ∈ ( − ∞ , ln a ] , n = 0 , 1 , . . . , N , t N = ln a } Taylor series and Runge-Kutta methods for this problem have been developed. For finding of an approximate solution at the grid node t 0 , new one-step methods have been constructed. For finding of the solution at other grid nodes, the standard one-step methods have been used. An algorithm for the automatic generation of a grid which guarantees the prescribed accuracy is presented. The effectiveness of presented approach is illustrated by a set of numerical examples. The applicability of the constructed method to systems of singular differential equations is shown.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear ordinary differential equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular initial value problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor series method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Datsko, B.Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kunynets, A.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Włoch, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied numerical mathematics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1985</subfield><subfield code="g">148, Seite 140-151</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266888879</subfield><subfield code="w">(DE-600)1468770-7</subfield><subfield code="w">(DE-576)075962314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:148</subfield><subfield code="g">pages:140-151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.76</subfield><subfield code="j">Numerische Mathematik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">148</subfield><subfield code="h">140-151</subfield></datafield></record></collection>
|
score |
7.3994293 |