Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability
Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In thi...
Ausführliche Beschreibung
Autor*in: |
Wu, Qing [verfasserIn] Li, Yikai [verfasserIn] Shinjo, Junji [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of multiphase flow - Oxford : Pergamon Press, 1973, 120 |
---|---|
Übergeordnetes Werk: |
volume:120 |
DOI / URN: |
10.1016/j.ijmultiphaseflow.2019.103107 |
---|
Katalog-ID: |
ELV002995123 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV002995123 | ||
003 | DE-627 | ||
005 | 20230524161442.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijmultiphaseflow.2019.103107 |2 doi | |
035 | |a (DE-627)ELV002995123 | ||
035 | |a (ELSEVIER)S0301-9322(19)30126-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Wu, Qing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In this paper, a three-dimensional (3D) numerical simulation on a single-mode RT instability (Atwood number is close to unity) with the focus on the development of the liquid spike was conducted by the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. Nonlinear dynamic characteristics of the RT instability were then analyzed thoroughly based on the detailed information of pressure and velocity fields obtained from the numerical simulation. The numerical results revealed that a local maximum pressure point, where an equilibrium was achieved between the inertial force and pressure gradient, was formed at the root of liquid spike region caused by the horizontal impinging flow. Combined with the theoretical analysis, the relationships among the steady-state characteristic parameters, the initial perturbation wavelength and the inertial acceleration were established. It is found that the velocity and width of the liquid entering the freed liquid spike at the maximum pressure point exhibit the same characteristics as those of a vertical jet emanating downward from an orifice injector under gravity. Thus, theories concerning the low-speed jet can be used to predict the disintegration behavior of a liquid spike caused by RT instability. | ||
650 | 4 | |a CLSVOF | |
650 | 4 | |a Rayleigh-Taylor instability | |
650 | 4 | |a Nonlinear development | |
650 | 4 | |a Spike formation | |
700 | 1 | |a Li, Yikai |e verfasserin |4 aut | |
700 | 1 | |a Shinjo, Junji |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of multiphase flow |d Oxford : Pergamon Press, 1973 |g 120 |h Online-Ressource |w (DE-627)320510204 |w (DE-600)2013320-0 |w (DE-576)096806605 |x 1879-3533 |7 nnns |
773 | 1 | 8 | |g volume:120 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.00 |j Physik: Allgemeines |
951 | |a AR | ||
952 | |d 120 |
author_variant |
q w qw y l yl j s js |
---|---|
matchkey_str |
article:18793533:2019----::ealdolnadnmcoteiudpkdvlpetnaeumducuebahedmn |
hierarchy_sort_str |
2019 |
bklnumber |
33.00 |
publishDate |
2019 |
allfields |
10.1016/j.ijmultiphaseflow.2019.103107 doi (DE-627)ELV002995123 (ELSEVIER)S0301-9322(19)30126-0 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Wu, Qing verfasserin aut Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In this paper, a three-dimensional (3D) numerical simulation on a single-mode RT instability (Atwood number is close to unity) with the focus on the development of the liquid spike was conducted by the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. Nonlinear dynamic characteristics of the RT instability were then analyzed thoroughly based on the detailed information of pressure and velocity fields obtained from the numerical simulation. The numerical results revealed that a local maximum pressure point, where an equilibrium was achieved between the inertial force and pressure gradient, was formed at the root of liquid spike region caused by the horizontal impinging flow. Combined with the theoretical analysis, the relationships among the steady-state characteristic parameters, the initial perturbation wavelength and the inertial acceleration were established. It is found that the velocity and width of the liquid entering the freed liquid spike at the maximum pressure point exhibit the same characteristics as those of a vertical jet emanating downward from an orifice injector under gravity. Thus, theories concerning the low-speed jet can be used to predict the disintegration behavior of a liquid spike caused by RT instability. CLSVOF Rayleigh-Taylor instability Nonlinear development Spike formation Li, Yikai verfasserin aut Shinjo, Junji verfasserin aut Enthalten in International journal of multiphase flow Oxford : Pergamon Press, 1973 120 Online-Ressource (DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 1879-3533 nnns volume:120 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 120 |
spelling |
10.1016/j.ijmultiphaseflow.2019.103107 doi (DE-627)ELV002995123 (ELSEVIER)S0301-9322(19)30126-0 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Wu, Qing verfasserin aut Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In this paper, a three-dimensional (3D) numerical simulation on a single-mode RT instability (Atwood number is close to unity) with the focus on the development of the liquid spike was conducted by the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. Nonlinear dynamic characteristics of the RT instability were then analyzed thoroughly based on the detailed information of pressure and velocity fields obtained from the numerical simulation. The numerical results revealed that a local maximum pressure point, where an equilibrium was achieved between the inertial force and pressure gradient, was formed at the root of liquid spike region caused by the horizontal impinging flow. Combined with the theoretical analysis, the relationships among the steady-state characteristic parameters, the initial perturbation wavelength and the inertial acceleration were established. It is found that the velocity and width of the liquid entering the freed liquid spike at the maximum pressure point exhibit the same characteristics as those of a vertical jet emanating downward from an orifice injector under gravity. Thus, theories concerning the low-speed jet can be used to predict the disintegration behavior of a liquid spike caused by RT instability. CLSVOF Rayleigh-Taylor instability Nonlinear development Spike formation Li, Yikai verfasserin aut Shinjo, Junji verfasserin aut Enthalten in International journal of multiphase flow Oxford : Pergamon Press, 1973 120 Online-Ressource (DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 1879-3533 nnns volume:120 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 120 |
allfields_unstemmed |
10.1016/j.ijmultiphaseflow.2019.103107 doi (DE-627)ELV002995123 (ELSEVIER)S0301-9322(19)30126-0 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Wu, Qing verfasserin aut Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In this paper, a three-dimensional (3D) numerical simulation on a single-mode RT instability (Atwood number is close to unity) with the focus on the development of the liquid spike was conducted by the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. Nonlinear dynamic characteristics of the RT instability were then analyzed thoroughly based on the detailed information of pressure and velocity fields obtained from the numerical simulation. The numerical results revealed that a local maximum pressure point, where an equilibrium was achieved between the inertial force and pressure gradient, was formed at the root of liquid spike region caused by the horizontal impinging flow. Combined with the theoretical analysis, the relationships among the steady-state characteristic parameters, the initial perturbation wavelength and the inertial acceleration were established. It is found that the velocity and width of the liquid entering the freed liquid spike at the maximum pressure point exhibit the same characteristics as those of a vertical jet emanating downward from an orifice injector under gravity. Thus, theories concerning the low-speed jet can be used to predict the disintegration behavior of a liquid spike caused by RT instability. CLSVOF Rayleigh-Taylor instability Nonlinear development Spike formation Li, Yikai verfasserin aut Shinjo, Junji verfasserin aut Enthalten in International journal of multiphase flow Oxford : Pergamon Press, 1973 120 Online-Ressource (DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 1879-3533 nnns volume:120 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 120 |
allfieldsGer |
10.1016/j.ijmultiphaseflow.2019.103107 doi (DE-627)ELV002995123 (ELSEVIER)S0301-9322(19)30126-0 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Wu, Qing verfasserin aut Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In this paper, a three-dimensional (3D) numerical simulation on a single-mode RT instability (Atwood number is close to unity) with the focus on the development of the liquid spike was conducted by the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. Nonlinear dynamic characteristics of the RT instability were then analyzed thoroughly based on the detailed information of pressure and velocity fields obtained from the numerical simulation. The numerical results revealed that a local maximum pressure point, where an equilibrium was achieved between the inertial force and pressure gradient, was formed at the root of liquid spike region caused by the horizontal impinging flow. Combined with the theoretical analysis, the relationships among the steady-state characteristic parameters, the initial perturbation wavelength and the inertial acceleration were established. It is found that the velocity and width of the liquid entering the freed liquid spike at the maximum pressure point exhibit the same characteristics as those of a vertical jet emanating downward from an orifice injector under gravity. Thus, theories concerning the low-speed jet can be used to predict the disintegration behavior of a liquid spike caused by RT instability. CLSVOF Rayleigh-Taylor instability Nonlinear development Spike formation Li, Yikai verfasserin aut Shinjo, Junji verfasserin aut Enthalten in International journal of multiphase flow Oxford : Pergamon Press, 1973 120 Online-Ressource (DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 1879-3533 nnns volume:120 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 120 |
allfieldsSound |
10.1016/j.ijmultiphaseflow.2019.103107 doi (DE-627)ELV002995123 (ELSEVIER)S0301-9322(19)30126-0 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Wu, Qing verfasserin aut Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In this paper, a three-dimensional (3D) numerical simulation on a single-mode RT instability (Atwood number is close to unity) with the focus on the development of the liquid spike was conducted by the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. Nonlinear dynamic characteristics of the RT instability were then analyzed thoroughly based on the detailed information of pressure and velocity fields obtained from the numerical simulation. The numerical results revealed that a local maximum pressure point, where an equilibrium was achieved between the inertial force and pressure gradient, was formed at the root of liquid spike region caused by the horizontal impinging flow. Combined with the theoretical analysis, the relationships among the steady-state characteristic parameters, the initial perturbation wavelength and the inertial acceleration were established. It is found that the velocity and width of the liquid entering the freed liquid spike at the maximum pressure point exhibit the same characteristics as those of a vertical jet emanating downward from an orifice injector under gravity. Thus, theories concerning the low-speed jet can be used to predict the disintegration behavior of a liquid spike caused by RT instability. CLSVOF Rayleigh-Taylor instability Nonlinear development Spike formation Li, Yikai verfasserin aut Shinjo, Junji verfasserin aut Enthalten in International journal of multiphase flow Oxford : Pergamon Press, 1973 120 Online-Ressource (DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 1879-3533 nnns volume:120 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 120 |
language |
English |
source |
Enthalten in International journal of multiphase flow 120 volume:120 |
sourceStr |
Enthalten in International journal of multiphase flow 120 volume:120 |
format_phy_str_mv |
Article |
bklname |
Physik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
CLSVOF Rayleigh-Taylor instability Nonlinear development Spike formation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of multiphase flow |
authorswithroles_txt_mv |
Wu, Qing @@aut@@ Li, Yikai @@aut@@ Shinjo, Junji @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320510204 |
dewey-sort |
3530 |
id |
ELV002995123 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002995123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161442.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijmultiphaseflow.2019.103107</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002995123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-9322(19)30126-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In this paper, a three-dimensional (3D) numerical simulation on a single-mode RT instability (Atwood number is close to unity) with the focus on the development of the liquid spike was conducted by the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. Nonlinear dynamic characteristics of the RT instability were then analyzed thoroughly based on the detailed information of pressure and velocity fields obtained from the numerical simulation. The numerical results revealed that a local maximum pressure point, where an equilibrium was achieved between the inertial force and pressure gradient, was formed at the root of liquid spike region caused by the horizontal impinging flow. Combined with the theoretical analysis, the relationships among the steady-state characteristic parameters, the initial perturbation wavelength and the inertial acceleration were established. It is found that the velocity and width of the liquid entering the freed liquid spike at the maximum pressure point exhibit the same characteristics as those of a vertical jet emanating downward from an orifice injector under gravity. Thus, theories concerning the low-speed jet can be used to predict the disintegration behavior of a liquid spike caused by RT instability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CLSVOF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rayleigh-Taylor instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spike formation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yikai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shinjo, Junji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of multiphase flow</subfield><subfield code="d">Oxford : Pergamon Press, 1973</subfield><subfield code="g">120</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320510204</subfield><subfield code="w">(DE-600)2013320-0</subfield><subfield code="w">(DE-576)096806605</subfield><subfield code="x">1879-3533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield></datafield></record></collection>
|
author |
Wu, Qing |
spellingShingle |
Wu, Qing ddc 530 bkl 33.00 misc CLSVOF misc Rayleigh-Taylor instability misc Nonlinear development misc Spike formation Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability |
authorStr |
Wu, Qing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320510204 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-3533 |
topic_title |
530 DE-600 33.00 bkl Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability CLSVOF Rayleigh-Taylor instability Nonlinear development Spike formation |
topic |
ddc 530 bkl 33.00 misc CLSVOF misc Rayleigh-Taylor instability misc Nonlinear development misc Spike formation |
topic_unstemmed |
ddc 530 bkl 33.00 misc CLSVOF misc Rayleigh-Taylor instability misc Nonlinear development misc Spike formation |
topic_browse |
ddc 530 bkl 33.00 misc CLSVOF misc Rayleigh-Taylor instability misc Nonlinear development misc Spike formation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of multiphase flow |
hierarchy_parent_id |
320510204 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of multiphase flow |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320510204 (DE-600)2013320-0 (DE-576)096806605 |
title |
Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability |
ctrlnum |
(DE-627)ELV002995123 (ELSEVIER)S0301-9322(19)30126-0 |
title_full |
Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability |
author_sort |
Wu, Qing |
journal |
International journal of multiphase flow |
journalStr |
International journal of multiphase flow |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Wu, Qing Li, Yikai Shinjo, Junji |
container_volume |
120 |
class |
530 DE-600 33.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, Qing |
doi_str_mv |
10.1016/j.ijmultiphaseflow.2019.103107 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional rayleigh-taylor instability |
title_auth |
Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability |
abstract |
Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In this paper, a three-dimensional (3D) numerical simulation on a single-mode RT instability (Atwood number is close to unity) with the focus on the development of the liquid spike was conducted by the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. Nonlinear dynamic characteristics of the RT instability were then analyzed thoroughly based on the detailed information of pressure and velocity fields obtained from the numerical simulation. The numerical results revealed that a local maximum pressure point, where an equilibrium was achieved between the inertial force and pressure gradient, was formed at the root of liquid spike region caused by the horizontal impinging flow. Combined with the theoretical analysis, the relationships among the steady-state characteristic parameters, the initial perturbation wavelength and the inertial acceleration were established. It is found that the velocity and width of the liquid entering the freed liquid spike at the maximum pressure point exhibit the same characteristics as those of a vertical jet emanating downward from an orifice injector under gravity. Thus, theories concerning the low-speed jet can be used to predict the disintegration behavior of a liquid spike caused by RT instability. |
abstractGer |
Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In this paper, a three-dimensional (3D) numerical simulation on a single-mode RT instability (Atwood number is close to unity) with the focus on the development of the liquid spike was conducted by the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. Nonlinear dynamic characteristics of the RT instability were then analyzed thoroughly based on the detailed information of pressure and velocity fields obtained from the numerical simulation. The numerical results revealed that a local maximum pressure point, where an equilibrium was achieved between the inertial force and pressure gradient, was formed at the root of liquid spike region caused by the horizontal impinging flow. Combined with the theoretical analysis, the relationships among the steady-state characteristic parameters, the initial perturbation wavelength and the inertial acceleration were established. It is found that the velocity and width of the liquid entering the freed liquid spike at the maximum pressure point exhibit the same characteristics as those of a vertical jet emanating downward from an orifice injector under gravity. Thus, theories concerning the low-speed jet can be used to predict the disintegration behavior of a liquid spike caused by RT instability. |
abstract_unstemmed |
Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In this paper, a three-dimensional (3D) numerical simulation on a single-mode RT instability (Atwood number is close to unity) with the focus on the development of the liquid spike was conducted by the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. Nonlinear dynamic characteristics of the RT instability were then analyzed thoroughly based on the detailed information of pressure and velocity fields obtained from the numerical simulation. The numerical results revealed that a local maximum pressure point, where an equilibrium was achieved between the inertial force and pressure gradient, was formed at the root of liquid spike region caused by the horizontal impinging flow. Combined with the theoretical analysis, the relationships among the steady-state characteristic parameters, the initial perturbation wavelength and the inertial acceleration were established. It is found that the velocity and width of the liquid entering the freed liquid spike at the maximum pressure point exhibit the same characteristics as those of a vertical jet emanating downward from an orifice injector under gravity. Thus, theories concerning the low-speed jet can be used to predict the disintegration behavior of a liquid spike caused by RT instability. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability |
remote_bool |
true |
author2 |
Li, Yikai Shinjo, Junji |
author2Str |
Li, Yikai Shinjo, Junji |
ppnlink |
320510204 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijmultiphaseflow.2019.103107 |
up_date |
2024-07-06T18:08:42.111Z |
_version_ |
1803854096223961088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV002995123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161442.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijmultiphaseflow.2019.103107</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV002995123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-9322(19)30126-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detailed nonlinear dynamics of the liquid spike development in gaseous medium caused by a three-dimensional Rayleigh-Taylor instability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Previous researches on the single-mode Rayleigh-Taylor (RT) instability were mainly focused on the advancing speed of gaseous bubbles, while few of them shed light on the nonlinear dynamics of the liquid spikes (jets) where the droplets are constantly generated in the liquid atomization case. In this paper, a three-dimensional (3D) numerical simulation on a single-mode RT instability (Atwood number is close to unity) with the focus on the development of the liquid spike was conducted by the Coupled Level-Set and Volume-of-Fluid (CLSVOF) method. Nonlinear dynamic characteristics of the RT instability were then analyzed thoroughly based on the detailed information of pressure and velocity fields obtained from the numerical simulation. The numerical results revealed that a local maximum pressure point, where an equilibrium was achieved between the inertial force and pressure gradient, was formed at the root of liquid spike region caused by the horizontal impinging flow. Combined with the theoretical analysis, the relationships among the steady-state characteristic parameters, the initial perturbation wavelength and the inertial acceleration were established. It is found that the velocity and width of the liquid entering the freed liquid spike at the maximum pressure point exhibit the same characteristics as those of a vertical jet emanating downward from an orifice injector under gravity. Thus, theories concerning the low-speed jet can be used to predict the disintegration behavior of a liquid spike caused by RT instability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CLSVOF</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rayleigh-Taylor instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spike formation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yikai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shinjo, Junji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of multiphase flow</subfield><subfield code="d">Oxford : Pergamon Press, 1973</subfield><subfield code="g">120</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320510204</subfield><subfield code="w">(DE-600)2013320-0</subfield><subfield code="w">(DE-576)096806605</subfield><subfield code="x">1879-3533</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield></datafield></record></collection>
|
score |
7.400402 |