Gold nanorods/g-C
Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light...
Ausführliche Beschreibung
Autor*in: |
Tian, Huiyu [verfasserIn] Liu, Xiang [verfasserIn] Liang, Zhangqian [verfasserIn] Qiu, Pengyuan [verfasserIn] Qian, Xiu [verfasserIn] Cui, Hongzhi [verfasserIn] Tian, Jian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of colloid and interface science - Amsterdam [u.a.] : Elsevier, 1966, 557, Seite 700-708 |
---|---|
Übergeordnetes Werk: |
volume:557 ; pages:700-708 |
DOI / URN: |
10.1016/j.jcis.2019.09.075 |
---|
Katalog-ID: |
ELV003044424 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003044424 | ||
003 | DE-627 | ||
005 | 20231205154752.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcis.2019.09.075 |2 doi | |
035 | |a (DE-627)ELV003044424 | ||
035 | |a (ELSEVIER)S0021-9797(19)31119-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 35.18 |2 bkl | ||
100 | 1 | |a Tian, Huiyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Gold nanorods/g-C |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light irradiation. Here we report an Au nanorods (NRs)/g-C3N4 heterostructure with Au nanorods on g-C3N4’s surface. The most exciting feature of designed Au NRs/g-C3N4 heterostructures is that Au nanorods themselves are excited by visible and NIR light, which produce hot electrons and inject into g-C3N4. The photocatalytic H2 evolution rate of Au NRs/g-C3N4 heterostructures (350.6 μmol g−1 h−1) is nearly 4 times higher than that of g-C3N4 with Pt as cocatalyst (68.9 μmol g−1 h−1) under visible light illumination. The improved photocatalytic activity is ascribed to the increasing visible light-absorbing capacity of transverse surface plasmon resonance (TSPR) of Au nanorods and improved charge separation of Au NRs/g-C3N4 heterostructure. Even more important, Au NRs/g-C3N4 heterostructures achieve NIR photocatalytic H2 evolution performance (63.1 μmol g−1 h−1), owing to the longitudinal SPR (LSPR) effect of Au nanorods induced NIR light harvesting ability. | ||
650 | 4 | |a Photocatalytic H | |
650 | 4 | |a g-C | |
650 | 4 | |a Au nanorods | |
650 | 4 | |a Near-infrared | |
650 | 4 | |a Visible | |
700 | 1 | |a Liu, Xiang |e verfasserin |4 aut | |
700 | 1 | |a Liang, Zhangqian |e verfasserin |4 aut | |
700 | 1 | |a Qiu, Pengyuan |e verfasserin |4 aut | |
700 | 1 | |a Qian, Xiu |e verfasserin |4 aut | |
700 | 1 | |a Cui, Hongzhi |e verfasserin |0 (orcid)0000-0002-2212-0295 |4 aut | |
700 | 1 | |a Tian, Jian |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of colloid and interface science |d Amsterdam [u.a.] : Elsevier, 1966 |g 557, Seite 700-708 |h Online-Ressource |w (DE-627)266891136 |w (DE-600)1469021-4 |w (DE-576)103373160 |x 1095-7103 |7 nnns |
773 | 1 | 8 | |g volume:557 |g pages:700-708 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2411 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |
951 | |a AR | ||
952 | |d 557 |h 700-708 |
author_variant |
h t ht x l xl z l zl p q pq x q xq h c hc j t jt |
---|---|
matchkey_str |
article:10957103:2019----::odao |
hierarchy_sort_str |
2019 |
bklnumber |
35.18 |
publishDate |
2019 |
allfields |
10.1016/j.jcis.2019.09.075 doi (DE-627)ELV003044424 (ELSEVIER)S0021-9797(19)31119-1 DE-627 ger DE-627 rda eng 540 DE-600 35.18 bkl Tian, Huiyu verfasserin aut Gold nanorods/g-C 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light irradiation. Here we report an Au nanorods (NRs)/g-C3N4 heterostructure with Au nanorods on g-C3N4’s surface. The most exciting feature of designed Au NRs/g-C3N4 heterostructures is that Au nanorods themselves are excited by visible and NIR light, which produce hot electrons and inject into g-C3N4. The photocatalytic H2 evolution rate of Au NRs/g-C3N4 heterostructures (350.6 μmol g−1 h−1) is nearly 4 times higher than that of g-C3N4 with Pt as cocatalyst (68.9 μmol g−1 h−1) under visible light illumination. The improved photocatalytic activity is ascribed to the increasing visible light-absorbing capacity of transverse surface plasmon resonance (TSPR) of Au nanorods and improved charge separation of Au NRs/g-C3N4 heterostructure. Even more important, Au NRs/g-C3N4 heterostructures achieve NIR photocatalytic H2 evolution performance (63.1 μmol g−1 h−1), owing to the longitudinal SPR (LSPR) effect of Au nanorods induced NIR light harvesting ability. Photocatalytic H g-C Au nanorods Near-infrared Visible Liu, Xiang verfasserin aut Liang, Zhangqian verfasserin aut Qiu, Pengyuan verfasserin aut Qian, Xiu verfasserin aut Cui, Hongzhi verfasserin (orcid)0000-0002-2212-0295 aut Tian, Jian verfasserin aut Enthalten in Journal of colloid and interface science Amsterdam [u.a.] : Elsevier, 1966 557, Seite 700-708 Online-Ressource (DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 1095-7103 nnns volume:557 pages:700-708 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.18 Kolloidchemie Grenzflächenchemie AR 557 700-708 |
spelling |
10.1016/j.jcis.2019.09.075 doi (DE-627)ELV003044424 (ELSEVIER)S0021-9797(19)31119-1 DE-627 ger DE-627 rda eng 540 DE-600 35.18 bkl Tian, Huiyu verfasserin aut Gold nanorods/g-C 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light irradiation. Here we report an Au nanorods (NRs)/g-C3N4 heterostructure with Au nanorods on g-C3N4’s surface. The most exciting feature of designed Au NRs/g-C3N4 heterostructures is that Au nanorods themselves are excited by visible and NIR light, which produce hot electrons and inject into g-C3N4. The photocatalytic H2 evolution rate of Au NRs/g-C3N4 heterostructures (350.6 μmol g−1 h−1) is nearly 4 times higher than that of g-C3N4 with Pt as cocatalyst (68.9 μmol g−1 h−1) under visible light illumination. The improved photocatalytic activity is ascribed to the increasing visible light-absorbing capacity of transverse surface plasmon resonance (TSPR) of Au nanorods and improved charge separation of Au NRs/g-C3N4 heterostructure. Even more important, Au NRs/g-C3N4 heterostructures achieve NIR photocatalytic H2 evolution performance (63.1 μmol g−1 h−1), owing to the longitudinal SPR (LSPR) effect of Au nanorods induced NIR light harvesting ability. Photocatalytic H g-C Au nanorods Near-infrared Visible Liu, Xiang verfasserin aut Liang, Zhangqian verfasserin aut Qiu, Pengyuan verfasserin aut Qian, Xiu verfasserin aut Cui, Hongzhi verfasserin (orcid)0000-0002-2212-0295 aut Tian, Jian verfasserin aut Enthalten in Journal of colloid and interface science Amsterdam [u.a.] : Elsevier, 1966 557, Seite 700-708 Online-Ressource (DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 1095-7103 nnns volume:557 pages:700-708 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.18 Kolloidchemie Grenzflächenchemie AR 557 700-708 |
allfields_unstemmed |
10.1016/j.jcis.2019.09.075 doi (DE-627)ELV003044424 (ELSEVIER)S0021-9797(19)31119-1 DE-627 ger DE-627 rda eng 540 DE-600 35.18 bkl Tian, Huiyu verfasserin aut Gold nanorods/g-C 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light irradiation. Here we report an Au nanorods (NRs)/g-C3N4 heterostructure with Au nanorods on g-C3N4’s surface. The most exciting feature of designed Au NRs/g-C3N4 heterostructures is that Au nanorods themselves are excited by visible and NIR light, which produce hot electrons and inject into g-C3N4. The photocatalytic H2 evolution rate of Au NRs/g-C3N4 heterostructures (350.6 μmol g−1 h−1) is nearly 4 times higher than that of g-C3N4 with Pt as cocatalyst (68.9 μmol g−1 h−1) under visible light illumination. The improved photocatalytic activity is ascribed to the increasing visible light-absorbing capacity of transverse surface plasmon resonance (TSPR) of Au nanorods and improved charge separation of Au NRs/g-C3N4 heterostructure. Even more important, Au NRs/g-C3N4 heterostructures achieve NIR photocatalytic H2 evolution performance (63.1 μmol g−1 h−1), owing to the longitudinal SPR (LSPR) effect of Au nanorods induced NIR light harvesting ability. Photocatalytic H g-C Au nanorods Near-infrared Visible Liu, Xiang verfasserin aut Liang, Zhangqian verfasserin aut Qiu, Pengyuan verfasserin aut Qian, Xiu verfasserin aut Cui, Hongzhi verfasserin (orcid)0000-0002-2212-0295 aut Tian, Jian verfasserin aut Enthalten in Journal of colloid and interface science Amsterdam [u.a.] : Elsevier, 1966 557, Seite 700-708 Online-Ressource (DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 1095-7103 nnns volume:557 pages:700-708 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.18 Kolloidchemie Grenzflächenchemie AR 557 700-708 |
allfieldsGer |
10.1016/j.jcis.2019.09.075 doi (DE-627)ELV003044424 (ELSEVIER)S0021-9797(19)31119-1 DE-627 ger DE-627 rda eng 540 DE-600 35.18 bkl Tian, Huiyu verfasserin aut Gold nanorods/g-C 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light irradiation. Here we report an Au nanorods (NRs)/g-C3N4 heterostructure with Au nanorods on g-C3N4’s surface. The most exciting feature of designed Au NRs/g-C3N4 heterostructures is that Au nanorods themselves are excited by visible and NIR light, which produce hot electrons and inject into g-C3N4. The photocatalytic H2 evolution rate of Au NRs/g-C3N4 heterostructures (350.6 μmol g−1 h−1) is nearly 4 times higher than that of g-C3N4 with Pt as cocatalyst (68.9 μmol g−1 h−1) under visible light illumination. The improved photocatalytic activity is ascribed to the increasing visible light-absorbing capacity of transverse surface plasmon resonance (TSPR) of Au nanorods and improved charge separation of Au NRs/g-C3N4 heterostructure. Even more important, Au NRs/g-C3N4 heterostructures achieve NIR photocatalytic H2 evolution performance (63.1 μmol g−1 h−1), owing to the longitudinal SPR (LSPR) effect of Au nanorods induced NIR light harvesting ability. Photocatalytic H g-C Au nanorods Near-infrared Visible Liu, Xiang verfasserin aut Liang, Zhangqian verfasserin aut Qiu, Pengyuan verfasserin aut Qian, Xiu verfasserin aut Cui, Hongzhi verfasserin (orcid)0000-0002-2212-0295 aut Tian, Jian verfasserin aut Enthalten in Journal of colloid and interface science Amsterdam [u.a.] : Elsevier, 1966 557, Seite 700-708 Online-Ressource (DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 1095-7103 nnns volume:557 pages:700-708 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.18 Kolloidchemie Grenzflächenchemie AR 557 700-708 |
allfieldsSound |
10.1016/j.jcis.2019.09.075 doi (DE-627)ELV003044424 (ELSEVIER)S0021-9797(19)31119-1 DE-627 ger DE-627 rda eng 540 DE-600 35.18 bkl Tian, Huiyu verfasserin aut Gold nanorods/g-C 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light irradiation. Here we report an Au nanorods (NRs)/g-C3N4 heterostructure with Au nanorods on g-C3N4’s surface. The most exciting feature of designed Au NRs/g-C3N4 heterostructures is that Au nanorods themselves are excited by visible and NIR light, which produce hot electrons and inject into g-C3N4. The photocatalytic H2 evolution rate of Au NRs/g-C3N4 heterostructures (350.6 μmol g−1 h−1) is nearly 4 times higher than that of g-C3N4 with Pt as cocatalyst (68.9 μmol g−1 h−1) under visible light illumination. The improved photocatalytic activity is ascribed to the increasing visible light-absorbing capacity of transverse surface plasmon resonance (TSPR) of Au nanorods and improved charge separation of Au NRs/g-C3N4 heterostructure. Even more important, Au NRs/g-C3N4 heterostructures achieve NIR photocatalytic H2 evolution performance (63.1 μmol g−1 h−1), owing to the longitudinal SPR (LSPR) effect of Au nanorods induced NIR light harvesting ability. Photocatalytic H g-C Au nanorods Near-infrared Visible Liu, Xiang verfasserin aut Liang, Zhangqian verfasserin aut Qiu, Pengyuan verfasserin aut Qian, Xiu verfasserin aut Cui, Hongzhi verfasserin (orcid)0000-0002-2212-0295 aut Tian, Jian verfasserin aut Enthalten in Journal of colloid and interface science Amsterdam [u.a.] : Elsevier, 1966 557, Seite 700-708 Online-Ressource (DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 1095-7103 nnns volume:557 pages:700-708 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.18 Kolloidchemie Grenzflächenchemie AR 557 700-708 |
language |
English |
source |
Enthalten in Journal of colloid and interface science 557, Seite 700-708 volume:557 pages:700-708 |
sourceStr |
Enthalten in Journal of colloid and interface science 557, Seite 700-708 volume:557 pages:700-708 |
format_phy_str_mv |
Article |
bklname |
Kolloidchemie Grenzflächenchemie |
institution |
findex.gbv.de |
topic_facet |
Photocatalytic H g-C Au nanorods Near-infrared Visible |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Journal of colloid and interface science |
authorswithroles_txt_mv |
Tian, Huiyu @@aut@@ Liu, Xiang @@aut@@ Liang, Zhangqian @@aut@@ Qiu, Pengyuan @@aut@@ Qian, Xiu @@aut@@ Cui, Hongzhi @@aut@@ Tian, Jian @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
266891136 |
dewey-sort |
3540 |
id |
ELV003044424 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003044424</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154752.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcis.2019.09.075</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003044424</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9797(19)31119-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Huiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gold nanorods/g-C</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light irradiation. Here we report an Au nanorods (NRs)/g-C3N4 heterostructure with Au nanorods on g-C3N4’s surface. The most exciting feature of designed Au NRs/g-C3N4 heterostructures is that Au nanorods themselves are excited by visible and NIR light, which produce hot electrons and inject into g-C3N4. The photocatalytic H2 evolution rate of Au NRs/g-C3N4 heterostructures (350.6 μmol g−1 h−1) is nearly 4 times higher than that of g-C3N4 with Pt as cocatalyst (68.9 μmol g−1 h−1) under visible light illumination. The improved photocatalytic activity is ascribed to the increasing visible light-absorbing capacity of transverse surface plasmon resonance (TSPR) of Au nanorods and improved charge separation of Au NRs/g-C3N4 heterostructure. Even more important, Au NRs/g-C3N4 heterostructures achieve NIR photocatalytic H2 evolution performance (63.1 μmol g−1 h−1), owing to the longitudinal SPR (LSPR) effect of Au nanorods induced NIR light harvesting ability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic H</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">g-C</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Au nanorods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near-infrared</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visible</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Zhangqian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Pengyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Xiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Hongzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2212-0295</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of colloid and interface science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1966</subfield><subfield code="g">557, Seite 700-708</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266891136</subfield><subfield code="w">(DE-600)1469021-4</subfield><subfield code="w">(DE-576)103373160</subfield><subfield code="x">1095-7103</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:557</subfield><subfield code="g">pages:700-708</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">557</subfield><subfield code="h">700-708</subfield></datafield></record></collection>
|
author |
Tian, Huiyu |
spellingShingle |
Tian, Huiyu ddc 540 bkl 35.18 misc Photocatalytic H misc g-C misc Au nanorods misc Near-infrared misc Visible Gold nanorods/g-C |
authorStr |
Tian, Huiyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266891136 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1095-7103 |
topic_title |
540 DE-600 35.18 bkl Gold nanorods/g-C Photocatalytic H g-C Au nanorods Near-infrared Visible |
topic |
ddc 540 bkl 35.18 misc Photocatalytic H misc g-C misc Au nanorods misc Near-infrared misc Visible |
topic_unstemmed |
ddc 540 bkl 35.18 misc Photocatalytic H misc g-C misc Au nanorods misc Near-infrared misc Visible |
topic_browse |
ddc 540 bkl 35.18 misc Photocatalytic H misc g-C misc Au nanorods misc Near-infrared misc Visible |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of colloid and interface science |
hierarchy_parent_id |
266891136 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Journal of colloid and interface science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 |
title |
Gold nanorods/g-C |
ctrlnum |
(DE-627)ELV003044424 (ELSEVIER)S0021-9797(19)31119-1 |
title_full |
Gold nanorods/g-C |
author_sort |
Tian, Huiyu |
journal |
Journal of colloid and interface science |
journalStr |
Journal of colloid and interface science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
700 |
author_browse |
Tian, Huiyu Liu, Xiang Liang, Zhangqian Qiu, Pengyuan Qian, Xiu Cui, Hongzhi Tian, Jian |
container_volume |
557 |
class |
540 DE-600 35.18 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tian, Huiyu |
doi_str_mv |
10.1016/j.jcis.2019.09.075 |
normlink |
(ORCID)0000-0002-2212-0295 |
normlink_prefix_str_mv |
(orcid)0000-0002-2212-0295 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
gold nanorods/g-c |
title_auth |
Gold nanorods/g-C |
abstract |
Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light irradiation. Here we report an Au nanorods (NRs)/g-C3N4 heterostructure with Au nanorods on g-C3N4’s surface. The most exciting feature of designed Au NRs/g-C3N4 heterostructures is that Au nanorods themselves are excited by visible and NIR light, which produce hot electrons and inject into g-C3N4. The photocatalytic H2 evolution rate of Au NRs/g-C3N4 heterostructures (350.6 μmol g−1 h−1) is nearly 4 times higher than that of g-C3N4 with Pt as cocatalyst (68.9 μmol g−1 h−1) under visible light illumination. The improved photocatalytic activity is ascribed to the increasing visible light-absorbing capacity of transverse surface plasmon resonance (TSPR) of Au nanorods and improved charge separation of Au NRs/g-C3N4 heterostructure. Even more important, Au NRs/g-C3N4 heterostructures achieve NIR photocatalytic H2 evolution performance (63.1 μmol g−1 h−1), owing to the longitudinal SPR (LSPR) effect of Au nanorods induced NIR light harvesting ability. |
abstractGer |
Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light irradiation. Here we report an Au nanorods (NRs)/g-C3N4 heterostructure with Au nanorods on g-C3N4’s surface. The most exciting feature of designed Au NRs/g-C3N4 heterostructures is that Au nanorods themselves are excited by visible and NIR light, which produce hot electrons and inject into g-C3N4. The photocatalytic H2 evolution rate of Au NRs/g-C3N4 heterostructures (350.6 μmol g−1 h−1) is nearly 4 times higher than that of g-C3N4 with Pt as cocatalyst (68.9 μmol g−1 h−1) under visible light illumination. The improved photocatalytic activity is ascribed to the increasing visible light-absorbing capacity of transverse surface plasmon resonance (TSPR) of Au nanorods and improved charge separation of Au NRs/g-C3N4 heterostructure. Even more important, Au NRs/g-C3N4 heterostructures achieve NIR photocatalytic H2 evolution performance (63.1 μmol g−1 h−1), owing to the longitudinal SPR (LSPR) effect of Au nanorods induced NIR light harvesting ability. |
abstract_unstemmed |
Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light irradiation. Here we report an Au nanorods (NRs)/g-C3N4 heterostructure with Au nanorods on g-C3N4’s surface. The most exciting feature of designed Au NRs/g-C3N4 heterostructures is that Au nanorods themselves are excited by visible and NIR light, which produce hot electrons and inject into g-C3N4. The photocatalytic H2 evolution rate of Au NRs/g-C3N4 heterostructures (350.6 μmol g−1 h−1) is nearly 4 times higher than that of g-C3N4 with Pt as cocatalyst (68.9 μmol g−1 h−1) under visible light illumination. The improved photocatalytic activity is ascribed to the increasing visible light-absorbing capacity of transverse surface plasmon resonance (TSPR) of Au nanorods and improved charge separation of Au NRs/g-C3N4 heterostructure. Even more important, Au NRs/g-C3N4 heterostructures achieve NIR photocatalytic H2 evolution performance (63.1 μmol g−1 h−1), owing to the longitudinal SPR (LSPR) effect of Au nanorods induced NIR light harvesting ability. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Gold nanorods/g-C |
remote_bool |
true |
author2 |
Liu, Xiang Liang, Zhangqian Qiu, Pengyuan Qian, Xiu Cui, Hongzhi Tian, Jian |
author2Str |
Liu, Xiang Liang, Zhangqian Qiu, Pengyuan Qian, Xiu Cui, Hongzhi Tian, Jian |
ppnlink |
266891136 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jcis.2019.09.075 |
up_date |
2024-07-06T18:18:31.723Z |
_version_ |
1803854714475905024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003044424</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154752.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcis.2019.09.075</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003044424</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9797(19)31119-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Huiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gold nanorods/g-C</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, broad spectrum (visible and near-infrared (NIR)) light utilization has aroused widespread attention in the research of photocatalysis. While g-C3N4, highly stable, cheap and easily synthesized, shows H2 evolution activity under visible light irradiation, it doesn’t perform under NIR light irradiation. Here we report an Au nanorods (NRs)/g-C3N4 heterostructure with Au nanorods on g-C3N4’s surface. The most exciting feature of designed Au NRs/g-C3N4 heterostructures is that Au nanorods themselves are excited by visible and NIR light, which produce hot electrons and inject into g-C3N4. The photocatalytic H2 evolution rate of Au NRs/g-C3N4 heterostructures (350.6 μmol g−1 h−1) is nearly 4 times higher than that of g-C3N4 with Pt as cocatalyst (68.9 μmol g−1 h−1) under visible light illumination. The improved photocatalytic activity is ascribed to the increasing visible light-absorbing capacity of transverse surface plasmon resonance (TSPR) of Au nanorods and improved charge separation of Au NRs/g-C3N4 heterostructure. Even more important, Au NRs/g-C3N4 heterostructures achieve NIR photocatalytic H2 evolution performance (63.1 μmol g−1 h−1), owing to the longitudinal SPR (LSPR) effect of Au nanorods induced NIR light harvesting ability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic H</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">g-C</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Au nanorods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near-infrared</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visible</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Zhangqian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Pengyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Xiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Hongzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2212-0295</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of colloid and interface science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1966</subfield><subfield code="g">557, Seite 700-708</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266891136</subfield><subfield code="w">(DE-600)1469021-4</subfield><subfield code="w">(DE-576)103373160</subfield><subfield code="x">1095-7103</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:557</subfield><subfield code="g">pages:700-708</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">557</subfield><subfield code="h">700-708</subfield></datafield></record></collection>
|
score |
7.400509 |