Multi-stage adaptive regression for online activity recognition
Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This pa...
Ausführliche Beschreibung
Autor*in: |
Liu, Bangli [verfasserIn] Cai, Haibin [verfasserIn] Ju, Zhaojie [verfasserIn] Liu, Honghai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Pattern recognition - Amsterdam : Elsevier, 1968, 98 |
---|---|
Übergeordnetes Werk: |
volume:98 |
DOI / URN: |
10.1016/j.patcog.2019.107053 |
---|
Katalog-ID: |
ELV003075672 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003075672 | ||
003 | DE-627 | ||
005 | 20230524145343.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.patcog.2019.107053 |2 doi | |
035 | |a (DE-627)ELV003075672 | ||
035 | |a (ELSEVIER)S0031-3203(19)30355-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 000 |a 150 |q DE-600 |
084 | |a 54.74 |2 bkl | ||
100 | 1 | |a Liu, Bangli |e verfasserin |0 (orcid)0000-0002-2543-8987 |4 aut | |
245 | 1 | 0 | |a Multi-stage adaptive regression for online activity recognition |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This paper proposes a novel approach, named Multi-stage Adaptive Regression (MAR), for online activity recognition with the main focus on addressing the partial observation problem. Specifically, the MAR framework delicately assembles overlapped activity observations to improve its robustness against arbitrary activity segments. Then multiple score functions corresponding to each specific performance stage are collaboratively learned via a adaptive label strategy to enhance its power of discriminating similar partial activities. Moreover, the Online Human Interaction (OHI) database is constructed to evaluate the online activity recognition in human interaction scenarios. Extensive experimental evaluations on the Multi-Modal Action Detection (MAD) database and the OHI database show that the MAR method achieves an outstanding performance over the state-of-the-art approaches. | ||
650 | 4 | |a Online activity recognition | |
650 | 4 | |a Interaction recognition | |
650 | 4 | |a Partial observation | |
650 | 4 | |a Adaptive regression | |
700 | 1 | |a Cai, Haibin |e verfasserin |4 aut | |
700 | 1 | |a Ju, Zhaojie |e verfasserin |0 (orcid)0000-0002-9524-7609 |4 aut | |
700 | 1 | |a Liu, Honghai |e verfasserin |0 (orcid)0000-0002-2880-4698 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Pattern recognition |d Amsterdam : Elsevier, 1968 |g 98 |h Online-Ressource |w (DE-627)265784131 |w (DE-600)1466343-0 |w (DE-576)101177364 |7 nnns |
773 | 1 | 8 | |g volume:98 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.74 |j Maschinelles Sehen |
951 | |a AR | ||
952 | |d 98 |
author_variant |
b l bl h c hc z j zj h l hl |
---|---|
matchkey_str |
liubanglicaihaibinjuzhaojieliuhonghai:2019----:utsaedpieersinoolnatv |
hierarchy_sort_str |
2019 |
bklnumber |
54.74 |
publishDate |
2019 |
allfields |
10.1016/j.patcog.2019.107053 doi (DE-627)ELV003075672 (ELSEVIER)S0031-3203(19)30355-3 DE-627 ger DE-627 rda eng 000 150 DE-600 54.74 bkl Liu, Bangli verfasserin (orcid)0000-0002-2543-8987 aut Multi-stage adaptive regression for online activity recognition 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This paper proposes a novel approach, named Multi-stage Adaptive Regression (MAR), for online activity recognition with the main focus on addressing the partial observation problem. Specifically, the MAR framework delicately assembles overlapped activity observations to improve its robustness against arbitrary activity segments. Then multiple score functions corresponding to each specific performance stage are collaboratively learned via a adaptive label strategy to enhance its power of discriminating similar partial activities. Moreover, the Online Human Interaction (OHI) database is constructed to evaluate the online activity recognition in human interaction scenarios. Extensive experimental evaluations on the Multi-Modal Action Detection (MAD) database and the OHI database show that the MAR method achieves an outstanding performance over the state-of-the-art approaches. Online activity recognition Interaction recognition Partial observation Adaptive regression Cai, Haibin verfasserin aut Ju, Zhaojie verfasserin (orcid)0000-0002-9524-7609 aut Liu, Honghai verfasserin (orcid)0000-0002-2880-4698 aut Enthalten in Pattern recognition Amsterdam : Elsevier, 1968 98 Online-Ressource (DE-627)265784131 (DE-600)1466343-0 (DE-576)101177364 nnns volume:98 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.74 Maschinelles Sehen AR 98 |
spelling |
10.1016/j.patcog.2019.107053 doi (DE-627)ELV003075672 (ELSEVIER)S0031-3203(19)30355-3 DE-627 ger DE-627 rda eng 000 150 DE-600 54.74 bkl Liu, Bangli verfasserin (orcid)0000-0002-2543-8987 aut Multi-stage adaptive regression for online activity recognition 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This paper proposes a novel approach, named Multi-stage Adaptive Regression (MAR), for online activity recognition with the main focus on addressing the partial observation problem. Specifically, the MAR framework delicately assembles overlapped activity observations to improve its robustness against arbitrary activity segments. Then multiple score functions corresponding to each specific performance stage are collaboratively learned via a adaptive label strategy to enhance its power of discriminating similar partial activities. Moreover, the Online Human Interaction (OHI) database is constructed to evaluate the online activity recognition in human interaction scenarios. Extensive experimental evaluations on the Multi-Modal Action Detection (MAD) database and the OHI database show that the MAR method achieves an outstanding performance over the state-of-the-art approaches. Online activity recognition Interaction recognition Partial observation Adaptive regression Cai, Haibin verfasserin aut Ju, Zhaojie verfasserin (orcid)0000-0002-9524-7609 aut Liu, Honghai verfasserin (orcid)0000-0002-2880-4698 aut Enthalten in Pattern recognition Amsterdam : Elsevier, 1968 98 Online-Ressource (DE-627)265784131 (DE-600)1466343-0 (DE-576)101177364 nnns volume:98 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.74 Maschinelles Sehen AR 98 |
allfields_unstemmed |
10.1016/j.patcog.2019.107053 doi (DE-627)ELV003075672 (ELSEVIER)S0031-3203(19)30355-3 DE-627 ger DE-627 rda eng 000 150 DE-600 54.74 bkl Liu, Bangli verfasserin (orcid)0000-0002-2543-8987 aut Multi-stage adaptive regression for online activity recognition 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This paper proposes a novel approach, named Multi-stage Adaptive Regression (MAR), for online activity recognition with the main focus on addressing the partial observation problem. Specifically, the MAR framework delicately assembles overlapped activity observations to improve its robustness against arbitrary activity segments. Then multiple score functions corresponding to each specific performance stage are collaboratively learned via a adaptive label strategy to enhance its power of discriminating similar partial activities. Moreover, the Online Human Interaction (OHI) database is constructed to evaluate the online activity recognition in human interaction scenarios. Extensive experimental evaluations on the Multi-Modal Action Detection (MAD) database and the OHI database show that the MAR method achieves an outstanding performance over the state-of-the-art approaches. Online activity recognition Interaction recognition Partial observation Adaptive regression Cai, Haibin verfasserin aut Ju, Zhaojie verfasserin (orcid)0000-0002-9524-7609 aut Liu, Honghai verfasserin (orcid)0000-0002-2880-4698 aut Enthalten in Pattern recognition Amsterdam : Elsevier, 1968 98 Online-Ressource (DE-627)265784131 (DE-600)1466343-0 (DE-576)101177364 nnns volume:98 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.74 Maschinelles Sehen AR 98 |
allfieldsGer |
10.1016/j.patcog.2019.107053 doi (DE-627)ELV003075672 (ELSEVIER)S0031-3203(19)30355-3 DE-627 ger DE-627 rda eng 000 150 DE-600 54.74 bkl Liu, Bangli verfasserin (orcid)0000-0002-2543-8987 aut Multi-stage adaptive regression for online activity recognition 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This paper proposes a novel approach, named Multi-stage Adaptive Regression (MAR), for online activity recognition with the main focus on addressing the partial observation problem. Specifically, the MAR framework delicately assembles overlapped activity observations to improve its robustness against arbitrary activity segments. Then multiple score functions corresponding to each specific performance stage are collaboratively learned via a adaptive label strategy to enhance its power of discriminating similar partial activities. Moreover, the Online Human Interaction (OHI) database is constructed to evaluate the online activity recognition in human interaction scenarios. Extensive experimental evaluations on the Multi-Modal Action Detection (MAD) database and the OHI database show that the MAR method achieves an outstanding performance over the state-of-the-art approaches. Online activity recognition Interaction recognition Partial observation Adaptive regression Cai, Haibin verfasserin aut Ju, Zhaojie verfasserin (orcid)0000-0002-9524-7609 aut Liu, Honghai verfasserin (orcid)0000-0002-2880-4698 aut Enthalten in Pattern recognition Amsterdam : Elsevier, 1968 98 Online-Ressource (DE-627)265784131 (DE-600)1466343-0 (DE-576)101177364 nnns volume:98 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.74 Maschinelles Sehen AR 98 |
allfieldsSound |
10.1016/j.patcog.2019.107053 doi (DE-627)ELV003075672 (ELSEVIER)S0031-3203(19)30355-3 DE-627 ger DE-627 rda eng 000 150 DE-600 54.74 bkl Liu, Bangli verfasserin (orcid)0000-0002-2543-8987 aut Multi-stage adaptive regression for online activity recognition 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This paper proposes a novel approach, named Multi-stage Adaptive Regression (MAR), for online activity recognition with the main focus on addressing the partial observation problem. Specifically, the MAR framework delicately assembles overlapped activity observations to improve its robustness against arbitrary activity segments. Then multiple score functions corresponding to each specific performance stage are collaboratively learned via a adaptive label strategy to enhance its power of discriminating similar partial activities. Moreover, the Online Human Interaction (OHI) database is constructed to evaluate the online activity recognition in human interaction scenarios. Extensive experimental evaluations on the Multi-Modal Action Detection (MAD) database and the OHI database show that the MAR method achieves an outstanding performance over the state-of-the-art approaches. Online activity recognition Interaction recognition Partial observation Adaptive regression Cai, Haibin verfasserin aut Ju, Zhaojie verfasserin (orcid)0000-0002-9524-7609 aut Liu, Honghai verfasserin (orcid)0000-0002-2880-4698 aut Enthalten in Pattern recognition Amsterdam : Elsevier, 1968 98 Online-Ressource (DE-627)265784131 (DE-600)1466343-0 (DE-576)101177364 nnns volume:98 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.74 Maschinelles Sehen AR 98 |
language |
English |
source |
Enthalten in Pattern recognition 98 volume:98 |
sourceStr |
Enthalten in Pattern recognition 98 volume:98 |
format_phy_str_mv |
Article |
bklname |
Maschinelles Sehen |
institution |
findex.gbv.de |
topic_facet |
Online activity recognition Interaction recognition Partial observation Adaptive regression |
dewey-raw |
000 |
isfreeaccess_bool |
false |
container_title |
Pattern recognition |
authorswithroles_txt_mv |
Liu, Bangli @@aut@@ Cai, Haibin @@aut@@ Ju, Zhaojie @@aut@@ Liu, Honghai @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
265784131 |
dewey-sort |
0 |
id |
ELV003075672 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003075672</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145343.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.patcog.2019.107053</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003075672</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0031-3203(19)30355-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">150</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Bangli</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2543-8987</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-stage adaptive regression for online activity recognition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This paper proposes a novel approach, named Multi-stage Adaptive Regression (MAR), for online activity recognition with the main focus on addressing the partial observation problem. Specifically, the MAR framework delicately assembles overlapped activity observations to improve its robustness against arbitrary activity segments. Then multiple score functions corresponding to each specific performance stage are collaboratively learned via a adaptive label strategy to enhance its power of discriminating similar partial activities. Moreover, the Online Human Interaction (OHI) database is constructed to evaluate the online activity recognition in human interaction scenarios. Extensive experimental evaluations on the Multi-Modal Action Detection (MAD) database and the OHI database show that the MAR method achieves an outstanding performance over the state-of-the-art approaches.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online activity recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interaction recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial observation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive regression</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Haibin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ju, Zhaojie</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9524-7609</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Honghai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2880-4698</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Pattern recognition</subfield><subfield code="d">Amsterdam : Elsevier, 1968</subfield><subfield code="g">98</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)265784131</subfield><subfield code="w">(DE-600)1466343-0</subfield><subfield code="w">(DE-576)101177364</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:98</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.74</subfield><subfield code="j">Maschinelles Sehen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">98</subfield></datafield></record></collection>
|
author |
Liu, Bangli |
spellingShingle |
Liu, Bangli ddc 000 bkl 54.74 misc Online activity recognition misc Interaction recognition misc Partial observation misc Adaptive regression Multi-stage adaptive regression for online activity recognition |
authorStr |
Liu, Bangli |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)265784131 |
format |
electronic Article |
dewey-ones |
000 - Computer science, information & general works 150 - Psychology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
000 150 DE-600 54.74 bkl Multi-stage adaptive regression for online activity recognition Online activity recognition Interaction recognition Partial observation Adaptive regression |
topic |
ddc 000 bkl 54.74 misc Online activity recognition misc Interaction recognition misc Partial observation misc Adaptive regression |
topic_unstemmed |
ddc 000 bkl 54.74 misc Online activity recognition misc Interaction recognition misc Partial observation misc Adaptive regression |
topic_browse |
ddc 000 bkl 54.74 misc Online activity recognition misc Interaction recognition misc Partial observation misc Adaptive regression |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Pattern recognition |
hierarchy_parent_id |
265784131 |
dewey-tens |
000 - Computer science, knowledge & systems 150 - Psychology |
hierarchy_top_title |
Pattern recognition |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)265784131 (DE-600)1466343-0 (DE-576)101177364 |
title |
Multi-stage adaptive regression for online activity recognition |
ctrlnum |
(DE-627)ELV003075672 (ELSEVIER)S0031-3203(19)30355-3 |
title_full |
Multi-stage adaptive regression for online activity recognition |
author_sort |
Liu, Bangli |
journal |
Pattern recognition |
journalStr |
Pattern recognition |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 100 - Philosophy & psychology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Bangli Cai, Haibin Ju, Zhaojie Liu, Honghai |
container_volume |
98 |
class |
000 150 DE-600 54.74 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Bangli |
doi_str_mv |
10.1016/j.patcog.2019.107053 |
normlink |
(ORCID)0000-0002-2543-8987 (ORCID)0000-0002-9524-7609 (ORCID)0000-0002-2880-4698 |
normlink_prefix_str_mv |
(orcid)0000-0002-2543-8987 (orcid)0000-0002-9524-7609 (orcid)0000-0002-2880-4698 |
dewey-full |
000 150 |
author2-role |
verfasserin |
title_sort |
multi-stage adaptive regression for online activity recognition |
title_auth |
Multi-stage adaptive regression for online activity recognition |
abstract |
Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This paper proposes a novel approach, named Multi-stage Adaptive Regression (MAR), for online activity recognition with the main focus on addressing the partial observation problem. Specifically, the MAR framework delicately assembles overlapped activity observations to improve its robustness against arbitrary activity segments. Then multiple score functions corresponding to each specific performance stage are collaboratively learned via a adaptive label strategy to enhance its power of discriminating similar partial activities. Moreover, the Online Human Interaction (OHI) database is constructed to evaluate the online activity recognition in human interaction scenarios. Extensive experimental evaluations on the Multi-Modal Action Detection (MAD) database and the OHI database show that the MAR method achieves an outstanding performance over the state-of-the-art approaches. |
abstractGer |
Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This paper proposes a novel approach, named Multi-stage Adaptive Regression (MAR), for online activity recognition with the main focus on addressing the partial observation problem. Specifically, the MAR framework delicately assembles overlapped activity observations to improve its robustness against arbitrary activity segments. Then multiple score functions corresponding to each specific performance stage are collaboratively learned via a adaptive label strategy to enhance its power of discriminating similar partial activities. Moreover, the Online Human Interaction (OHI) database is constructed to evaluate the online activity recognition in human interaction scenarios. Extensive experimental evaluations on the Multi-Modal Action Detection (MAD) database and the OHI database show that the MAR method achieves an outstanding performance over the state-of-the-art approaches. |
abstract_unstemmed |
Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This paper proposes a novel approach, named Multi-stage Adaptive Regression (MAR), for online activity recognition with the main focus on addressing the partial observation problem. Specifically, the MAR framework delicately assembles overlapped activity observations to improve its robustness against arbitrary activity segments. Then multiple score functions corresponding to each specific performance stage are collaboratively learned via a adaptive label strategy to enhance its power of discriminating similar partial activities. Moreover, the Online Human Interaction (OHI) database is constructed to evaluate the online activity recognition in human interaction scenarios. Extensive experimental evaluations on the Multi-Modal Action Detection (MAD) database and the OHI database show that the MAR method achieves an outstanding performance over the state-of-the-art approaches. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Multi-stage adaptive regression for online activity recognition |
remote_bool |
true |
author2 |
Cai, Haibin Ju, Zhaojie Liu, Honghai |
author2Str |
Cai, Haibin Ju, Zhaojie Liu, Honghai |
ppnlink |
265784131 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.patcog.2019.107053 |
up_date |
2024-07-06T18:24:32.999Z |
_version_ |
1803855093302296576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003075672</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145343.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.patcog.2019.107053</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003075672</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0031-3203(19)30355-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">150</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Bangli</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2543-8987</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-stage adaptive regression for online activity recognition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Online activity recognition which aims to detect and recognize activity instantly from a continuous video stream is a key technology in human-robot interaction. However, the partial activity observation problem, mainly due to the incomplete sequence acquisition, makes it greatly challenging. This paper proposes a novel approach, named Multi-stage Adaptive Regression (MAR), for online activity recognition with the main focus on addressing the partial observation problem. Specifically, the MAR framework delicately assembles overlapped activity observations to improve its robustness against arbitrary activity segments. Then multiple score functions corresponding to each specific performance stage are collaboratively learned via a adaptive label strategy to enhance its power of discriminating similar partial activities. Moreover, the Online Human Interaction (OHI) database is constructed to evaluate the online activity recognition in human interaction scenarios. Extensive experimental evaluations on the Multi-Modal Action Detection (MAD) database and the OHI database show that the MAR method achieves an outstanding performance over the state-of-the-art approaches.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online activity recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interaction recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial observation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive regression</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Haibin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ju, Zhaojie</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9524-7609</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Honghai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2880-4698</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Pattern recognition</subfield><subfield code="d">Amsterdam : Elsevier, 1968</subfield><subfield code="g">98</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)265784131</subfield><subfield code="w">(DE-600)1466343-0</subfield><subfield code="w">(DE-576)101177364</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:98</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.74</subfield><subfield code="j">Maschinelles Sehen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">98</subfield></datafield></record></collection>
|
score |
7.402323 |