Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams
The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow burie...
Ausführliche Beschreibung
Autor*in: |
Zhuo, Hui [verfasserIn] Qin, Botao [verfasserIn] Qin, Qinghe [verfasserIn] Su, Zhiwei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Process safety and environmental protection - Amsterdam : Elsevier, 1990, 131, Seite 246-254 |
---|---|
Übergeordnetes Werk: |
volume:131 ; pages:246-254 |
DOI / URN: |
10.1016/j.psep.2019.09.011 |
---|
Katalog-ID: |
ELV003091295 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003091295 | ||
003 | DE-627 | ||
005 | 20230524165317.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.psep.2019.09.011 |2 doi | |
035 | |a (DE-627)ELV003091295 | ||
035 | |a (ELSEVIER)S0957-5820(19)31238-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |a 540 |a 333.7 |q DE-600 |
084 | |a 58.18 |2 bkl | ||
100 | 1 | |a Zhuo, Hui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow buried coal seams is being proposed, which is based on the periodic pressure of the overburden, the key strata theory and the compression deformation of the broken rock mass. The model consists of a porous medium media and a discrete fracture network, and calculation equation for the porous medium and the crack width is granted. Taking the Bulianta mine as the background, the model was introduced into FLUENT to simulate the oxygen concentration field, the carbon monoxide concentration field and wind velocity field in the gob. The simulation results agreed well with the measured oxygen concentrations in the field. The spontaneous combustion danger zone and the law of carbon monoxide accumulation in gob are obtained by simulation. In the lower coal seam gob, the maximum width of the spontaneous combustion hazard zone is 108.67m, and the maximum width is 104.94m from the return air side of the gob, and its area is calculated to be 14,645 m2. In the upper coal seam gob, there is basically no spontaneous combustion danger zone that simultaneously meets wind speed and oxygen concentration. However, the oxygen concentration in most areas of the upper gob is between 8% and 18%. In order to prevent the formation of spontaneous combustion danger zone, it is necessary to take corresponding measures for the location with large surface cracks. The concentration of carbon monoxide in the lower gob is greater than the concentration of carbon monoxide in the upper gob. For upper gob, the distribution of carbon monoxide concentration is mainly affected by ground air leakage; for the lower gob, the distribution of carbon monoxide concentration is mainly affected by air leakage of working face. | ||
650 | 4 | |a Discrete fracture-pore model | |
650 | 4 | |a Shallow buried coal seams | |
650 | 4 | |a Spontaneous combustion hazard zone | |
650 | 4 | |a Air leakage | |
650 | 4 | |a Numerical simulation | |
700 | 1 | |a Qin, Botao |e verfasserin |4 aut | |
700 | 1 | |a Qin, Qinghe |e verfasserin |4 aut | |
700 | 1 | |a Su, Zhiwei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Process safety and environmental protection |d Amsterdam : Elsevier, 1990 |g 131, Seite 246-254 |h Online-Ressource |w (DE-627)318710420 |w (DE-600)2008004-9 |w (DE-576)284747785 |7 nnns |
773 | 1 | 8 | |g volume:131 |g pages:246-254 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.18 |j Chemische Betriebstechnik |
951 | |a AR | ||
952 | |d 131 |h 246-254 |
author_variant |
h z hz b q bq q q qq z s zs |
---|---|
matchkey_str |
zhuohuiqinbotaoqinqinghesuzhiwei:2019----:oeignsmltoocasotnosobsinngbf |
hierarchy_sort_str |
2019 |
bklnumber |
58.18 |
publishDate |
2019 |
allfields |
10.1016/j.psep.2019.09.011 doi (DE-627)ELV003091295 (ELSEVIER)S0957-5820(19)31238-8 DE-627 ger DE-627 rda eng 660 540 333.7 DE-600 58.18 bkl Zhuo, Hui verfasserin aut Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow buried coal seams is being proposed, which is based on the periodic pressure of the overburden, the key strata theory and the compression deformation of the broken rock mass. The model consists of a porous medium media and a discrete fracture network, and calculation equation for the porous medium and the crack width is granted. Taking the Bulianta mine as the background, the model was introduced into FLUENT to simulate the oxygen concentration field, the carbon monoxide concentration field and wind velocity field in the gob. The simulation results agreed well with the measured oxygen concentrations in the field. The spontaneous combustion danger zone and the law of carbon monoxide accumulation in gob are obtained by simulation. In the lower coal seam gob, the maximum width of the spontaneous combustion hazard zone is 108.67m, and the maximum width is 104.94m from the return air side of the gob, and its area is calculated to be 14,645 m2. In the upper coal seam gob, there is basically no spontaneous combustion danger zone that simultaneously meets wind speed and oxygen concentration. However, the oxygen concentration in most areas of the upper gob is between 8% and 18%. In order to prevent the formation of spontaneous combustion danger zone, it is necessary to take corresponding measures for the location with large surface cracks. The concentration of carbon monoxide in the lower gob is greater than the concentration of carbon monoxide in the upper gob. For upper gob, the distribution of carbon monoxide concentration is mainly affected by ground air leakage; for the lower gob, the distribution of carbon monoxide concentration is mainly affected by air leakage of working face. Discrete fracture-pore model Shallow buried coal seams Spontaneous combustion hazard zone Air leakage Numerical simulation Qin, Botao verfasserin aut Qin, Qinghe verfasserin aut Su, Zhiwei verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 131, Seite 246-254 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:131 pages:246-254 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.18 Chemische Betriebstechnik AR 131 246-254 |
spelling |
10.1016/j.psep.2019.09.011 doi (DE-627)ELV003091295 (ELSEVIER)S0957-5820(19)31238-8 DE-627 ger DE-627 rda eng 660 540 333.7 DE-600 58.18 bkl Zhuo, Hui verfasserin aut Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow buried coal seams is being proposed, which is based on the periodic pressure of the overburden, the key strata theory and the compression deformation of the broken rock mass. The model consists of a porous medium media and a discrete fracture network, and calculation equation for the porous medium and the crack width is granted. Taking the Bulianta mine as the background, the model was introduced into FLUENT to simulate the oxygen concentration field, the carbon monoxide concentration field and wind velocity field in the gob. The simulation results agreed well with the measured oxygen concentrations in the field. The spontaneous combustion danger zone and the law of carbon monoxide accumulation in gob are obtained by simulation. In the lower coal seam gob, the maximum width of the spontaneous combustion hazard zone is 108.67m, and the maximum width is 104.94m from the return air side of the gob, and its area is calculated to be 14,645 m2. In the upper coal seam gob, there is basically no spontaneous combustion danger zone that simultaneously meets wind speed and oxygen concentration. However, the oxygen concentration in most areas of the upper gob is between 8% and 18%. In order to prevent the formation of spontaneous combustion danger zone, it is necessary to take corresponding measures for the location with large surface cracks. The concentration of carbon monoxide in the lower gob is greater than the concentration of carbon monoxide in the upper gob. For upper gob, the distribution of carbon monoxide concentration is mainly affected by ground air leakage; for the lower gob, the distribution of carbon monoxide concentration is mainly affected by air leakage of working face. Discrete fracture-pore model Shallow buried coal seams Spontaneous combustion hazard zone Air leakage Numerical simulation Qin, Botao verfasserin aut Qin, Qinghe verfasserin aut Su, Zhiwei verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 131, Seite 246-254 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:131 pages:246-254 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.18 Chemische Betriebstechnik AR 131 246-254 |
allfields_unstemmed |
10.1016/j.psep.2019.09.011 doi (DE-627)ELV003091295 (ELSEVIER)S0957-5820(19)31238-8 DE-627 ger DE-627 rda eng 660 540 333.7 DE-600 58.18 bkl Zhuo, Hui verfasserin aut Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow buried coal seams is being proposed, which is based on the periodic pressure of the overburden, the key strata theory and the compression deformation of the broken rock mass. The model consists of a porous medium media and a discrete fracture network, and calculation equation for the porous medium and the crack width is granted. Taking the Bulianta mine as the background, the model was introduced into FLUENT to simulate the oxygen concentration field, the carbon monoxide concentration field and wind velocity field in the gob. The simulation results agreed well with the measured oxygen concentrations in the field. The spontaneous combustion danger zone and the law of carbon monoxide accumulation in gob are obtained by simulation. In the lower coal seam gob, the maximum width of the spontaneous combustion hazard zone is 108.67m, and the maximum width is 104.94m from the return air side of the gob, and its area is calculated to be 14,645 m2. In the upper coal seam gob, there is basically no spontaneous combustion danger zone that simultaneously meets wind speed and oxygen concentration. However, the oxygen concentration in most areas of the upper gob is between 8% and 18%. In order to prevent the formation of spontaneous combustion danger zone, it is necessary to take corresponding measures for the location with large surface cracks. The concentration of carbon monoxide in the lower gob is greater than the concentration of carbon monoxide in the upper gob. For upper gob, the distribution of carbon monoxide concentration is mainly affected by ground air leakage; for the lower gob, the distribution of carbon monoxide concentration is mainly affected by air leakage of working face. Discrete fracture-pore model Shallow buried coal seams Spontaneous combustion hazard zone Air leakage Numerical simulation Qin, Botao verfasserin aut Qin, Qinghe verfasserin aut Su, Zhiwei verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 131, Seite 246-254 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:131 pages:246-254 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.18 Chemische Betriebstechnik AR 131 246-254 |
allfieldsGer |
10.1016/j.psep.2019.09.011 doi (DE-627)ELV003091295 (ELSEVIER)S0957-5820(19)31238-8 DE-627 ger DE-627 rda eng 660 540 333.7 DE-600 58.18 bkl Zhuo, Hui verfasserin aut Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow buried coal seams is being proposed, which is based on the periodic pressure of the overburden, the key strata theory and the compression deformation of the broken rock mass. The model consists of a porous medium media and a discrete fracture network, and calculation equation for the porous medium and the crack width is granted. Taking the Bulianta mine as the background, the model was introduced into FLUENT to simulate the oxygen concentration field, the carbon monoxide concentration field and wind velocity field in the gob. The simulation results agreed well with the measured oxygen concentrations in the field. The spontaneous combustion danger zone and the law of carbon monoxide accumulation in gob are obtained by simulation. In the lower coal seam gob, the maximum width of the spontaneous combustion hazard zone is 108.67m, and the maximum width is 104.94m from the return air side of the gob, and its area is calculated to be 14,645 m2. In the upper coal seam gob, there is basically no spontaneous combustion danger zone that simultaneously meets wind speed and oxygen concentration. However, the oxygen concentration in most areas of the upper gob is between 8% and 18%. In order to prevent the formation of spontaneous combustion danger zone, it is necessary to take corresponding measures for the location with large surface cracks. The concentration of carbon monoxide in the lower gob is greater than the concentration of carbon monoxide in the upper gob. For upper gob, the distribution of carbon monoxide concentration is mainly affected by ground air leakage; for the lower gob, the distribution of carbon monoxide concentration is mainly affected by air leakage of working face. Discrete fracture-pore model Shallow buried coal seams Spontaneous combustion hazard zone Air leakage Numerical simulation Qin, Botao verfasserin aut Qin, Qinghe verfasserin aut Su, Zhiwei verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 131, Seite 246-254 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:131 pages:246-254 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.18 Chemische Betriebstechnik AR 131 246-254 |
allfieldsSound |
10.1016/j.psep.2019.09.011 doi (DE-627)ELV003091295 (ELSEVIER)S0957-5820(19)31238-8 DE-627 ger DE-627 rda eng 660 540 333.7 DE-600 58.18 bkl Zhuo, Hui verfasserin aut Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow buried coal seams is being proposed, which is based on the periodic pressure of the overburden, the key strata theory and the compression deformation of the broken rock mass. The model consists of a porous medium media and a discrete fracture network, and calculation equation for the porous medium and the crack width is granted. Taking the Bulianta mine as the background, the model was introduced into FLUENT to simulate the oxygen concentration field, the carbon monoxide concentration field and wind velocity field in the gob. The simulation results agreed well with the measured oxygen concentrations in the field. The spontaneous combustion danger zone and the law of carbon monoxide accumulation in gob are obtained by simulation. In the lower coal seam gob, the maximum width of the spontaneous combustion hazard zone is 108.67m, and the maximum width is 104.94m from the return air side of the gob, and its area is calculated to be 14,645 m2. In the upper coal seam gob, there is basically no spontaneous combustion danger zone that simultaneously meets wind speed and oxygen concentration. However, the oxygen concentration in most areas of the upper gob is between 8% and 18%. In order to prevent the formation of spontaneous combustion danger zone, it is necessary to take corresponding measures for the location with large surface cracks. The concentration of carbon monoxide in the lower gob is greater than the concentration of carbon monoxide in the upper gob. For upper gob, the distribution of carbon monoxide concentration is mainly affected by ground air leakage; for the lower gob, the distribution of carbon monoxide concentration is mainly affected by air leakage of working face. Discrete fracture-pore model Shallow buried coal seams Spontaneous combustion hazard zone Air leakage Numerical simulation Qin, Botao verfasserin aut Qin, Qinghe verfasserin aut Su, Zhiwei verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 131, Seite 246-254 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:131 pages:246-254 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.18 Chemische Betriebstechnik AR 131 246-254 |
language |
English |
source |
Enthalten in Process safety and environmental protection 131, Seite 246-254 volume:131 pages:246-254 |
sourceStr |
Enthalten in Process safety and environmental protection 131, Seite 246-254 volume:131 pages:246-254 |
format_phy_str_mv |
Article |
bklname |
Chemische Betriebstechnik |
institution |
findex.gbv.de |
topic_facet |
Discrete fracture-pore model Shallow buried coal seams Spontaneous combustion hazard zone Air leakage Numerical simulation |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Process safety and environmental protection |
authorswithroles_txt_mv |
Zhuo, Hui @@aut@@ Qin, Botao @@aut@@ Qin, Qinghe @@aut@@ Su, Zhiwei @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
318710420 |
dewey-sort |
3660 |
id |
ELV003091295 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003091295</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524165317.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.psep.2019.09.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003091295</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-5820(19)31238-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">540</subfield><subfield code="a">333.7</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhuo, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow buried coal seams is being proposed, which is based on the periodic pressure of the overburden, the key strata theory and the compression deformation of the broken rock mass. The model consists of a porous medium media and a discrete fracture network, and calculation equation for the porous medium and the crack width is granted. Taking the Bulianta mine as the background, the model was introduced into FLUENT to simulate the oxygen concentration field, the carbon monoxide concentration field and wind velocity field in the gob. The simulation results agreed well with the measured oxygen concentrations in the field. The spontaneous combustion danger zone and the law of carbon monoxide accumulation in gob are obtained by simulation. In the lower coal seam gob, the maximum width of the spontaneous combustion hazard zone is 108.67m, and the maximum width is 104.94m from the return air side of the gob, and its area is calculated to be 14,645 m2. In the upper coal seam gob, there is basically no spontaneous combustion danger zone that simultaneously meets wind speed and oxygen concentration. However, the oxygen concentration in most areas of the upper gob is between 8% and 18%. In order to prevent the formation of spontaneous combustion danger zone, it is necessary to take corresponding measures for the location with large surface cracks. The concentration of carbon monoxide in the lower gob is greater than the concentration of carbon monoxide in the upper gob. For upper gob, the distribution of carbon monoxide concentration is mainly affected by ground air leakage; for the lower gob, the distribution of carbon monoxide concentration is mainly affected by air leakage of working face.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete fracture-pore model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shallow buried coal seams</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spontaneous combustion hazard zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air leakage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Botao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Qinghe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Zhiwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Process safety and environmental protection</subfield><subfield code="d">Amsterdam : Elsevier, 1990</subfield><subfield code="g">131, Seite 246-254</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)318710420</subfield><subfield code="w">(DE-600)2008004-9</subfield><subfield code="w">(DE-576)284747785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:131</subfield><subfield code="g">pages:246-254</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.18</subfield><subfield code="j">Chemische Betriebstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">131</subfield><subfield code="h">246-254</subfield></datafield></record></collection>
|
author |
Zhuo, Hui |
spellingShingle |
Zhuo, Hui ddc 660 bkl 58.18 misc Discrete fracture-pore model misc Shallow buried coal seams misc Spontaneous combustion hazard zone misc Air leakage misc Numerical simulation Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams |
authorStr |
Zhuo, Hui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)318710420 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 540 - Chemistry & allied sciences 333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 540 333.7 DE-600 58.18 bkl Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams Discrete fracture-pore model Shallow buried coal seams Spontaneous combustion hazard zone Air leakage Numerical simulation |
topic |
ddc 660 bkl 58.18 misc Discrete fracture-pore model misc Shallow buried coal seams misc Spontaneous combustion hazard zone misc Air leakage misc Numerical simulation |
topic_unstemmed |
ddc 660 bkl 58.18 misc Discrete fracture-pore model misc Shallow buried coal seams misc Spontaneous combustion hazard zone misc Air leakage misc Numerical simulation |
topic_browse |
ddc 660 bkl 58.18 misc Discrete fracture-pore model misc Shallow buried coal seams misc Spontaneous combustion hazard zone misc Air leakage misc Numerical simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Process safety and environmental protection |
hierarchy_parent_id |
318710420 |
dewey-tens |
660 - Chemical engineering 540 - Chemistry 330 - Economics |
hierarchy_top_title |
Process safety and environmental protection |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 |
title |
Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams |
ctrlnum |
(DE-627)ELV003091295 (ELSEVIER)S0957-5820(19)31238-8 |
title_full |
Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams |
author_sort |
Zhuo, Hui |
journal |
Process safety and environmental protection |
journalStr |
Process safety and environmental protection |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
246 |
author_browse |
Zhuo, Hui Qin, Botao Qin, Qinghe Su, Zhiwei |
container_volume |
131 |
class |
660 540 333.7 DE-600 58.18 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhuo, Hui |
doi_str_mv |
10.1016/j.psep.2019.09.011 |
dewey-full |
660 540 333.7 |
author2-role |
verfasserin |
title_sort |
modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams |
title_auth |
Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams |
abstract |
The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow buried coal seams is being proposed, which is based on the periodic pressure of the overburden, the key strata theory and the compression deformation of the broken rock mass. The model consists of a porous medium media and a discrete fracture network, and calculation equation for the porous medium and the crack width is granted. Taking the Bulianta mine as the background, the model was introduced into FLUENT to simulate the oxygen concentration field, the carbon monoxide concentration field and wind velocity field in the gob. The simulation results agreed well with the measured oxygen concentrations in the field. The spontaneous combustion danger zone and the law of carbon monoxide accumulation in gob are obtained by simulation. In the lower coal seam gob, the maximum width of the spontaneous combustion hazard zone is 108.67m, and the maximum width is 104.94m from the return air side of the gob, and its area is calculated to be 14,645 m2. In the upper coal seam gob, there is basically no spontaneous combustion danger zone that simultaneously meets wind speed and oxygen concentration. However, the oxygen concentration in most areas of the upper gob is between 8% and 18%. In order to prevent the formation of spontaneous combustion danger zone, it is necessary to take corresponding measures for the location with large surface cracks. The concentration of carbon monoxide in the lower gob is greater than the concentration of carbon monoxide in the upper gob. For upper gob, the distribution of carbon monoxide concentration is mainly affected by ground air leakage; for the lower gob, the distribution of carbon monoxide concentration is mainly affected by air leakage of working face. |
abstractGer |
The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow buried coal seams is being proposed, which is based on the periodic pressure of the overburden, the key strata theory and the compression deformation of the broken rock mass. The model consists of a porous medium media and a discrete fracture network, and calculation equation for the porous medium and the crack width is granted. Taking the Bulianta mine as the background, the model was introduced into FLUENT to simulate the oxygen concentration field, the carbon monoxide concentration field and wind velocity field in the gob. The simulation results agreed well with the measured oxygen concentrations in the field. The spontaneous combustion danger zone and the law of carbon monoxide accumulation in gob are obtained by simulation. In the lower coal seam gob, the maximum width of the spontaneous combustion hazard zone is 108.67m, and the maximum width is 104.94m from the return air side of the gob, and its area is calculated to be 14,645 m2. In the upper coal seam gob, there is basically no spontaneous combustion danger zone that simultaneously meets wind speed and oxygen concentration. However, the oxygen concentration in most areas of the upper gob is between 8% and 18%. In order to prevent the formation of spontaneous combustion danger zone, it is necessary to take corresponding measures for the location with large surface cracks. The concentration of carbon monoxide in the lower gob is greater than the concentration of carbon monoxide in the upper gob. For upper gob, the distribution of carbon monoxide concentration is mainly affected by ground air leakage; for the lower gob, the distribution of carbon monoxide concentration is mainly affected by air leakage of working face. |
abstract_unstemmed |
The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow buried coal seams is being proposed, which is based on the periodic pressure of the overburden, the key strata theory and the compression deformation of the broken rock mass. The model consists of a porous medium media and a discrete fracture network, and calculation equation for the porous medium and the crack width is granted. Taking the Bulianta mine as the background, the model was introduced into FLUENT to simulate the oxygen concentration field, the carbon monoxide concentration field and wind velocity field in the gob. The simulation results agreed well with the measured oxygen concentrations in the field. The spontaneous combustion danger zone and the law of carbon monoxide accumulation in gob are obtained by simulation. In the lower coal seam gob, the maximum width of the spontaneous combustion hazard zone is 108.67m, and the maximum width is 104.94m from the return air side of the gob, and its area is calculated to be 14,645 m2. In the upper coal seam gob, there is basically no spontaneous combustion danger zone that simultaneously meets wind speed and oxygen concentration. However, the oxygen concentration in most areas of the upper gob is between 8% and 18%. In order to prevent the formation of spontaneous combustion danger zone, it is necessary to take corresponding measures for the location with large surface cracks. The concentration of carbon monoxide in the lower gob is greater than the concentration of carbon monoxide in the upper gob. For upper gob, the distribution of carbon monoxide concentration is mainly affected by ground air leakage; for the lower gob, the distribution of carbon monoxide concentration is mainly affected by air leakage of working face. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams |
remote_bool |
true |
author2 |
Qin, Botao Qin, Qinghe Su, Zhiwei |
author2Str |
Qin, Botao Qin, Qinghe Su, Zhiwei |
ppnlink |
318710420 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.psep.2019.09.011 |
up_date |
2024-07-06T18:27:38.627Z |
_version_ |
1803855287946313728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003091295</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524165317.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.psep.2019.09.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003091295</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-5820(19)31238-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">540</subfield><subfield code="a">333.7</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhuo, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pore and fracture are the path of energy, mass and momentum transfer and conduction in the gob, determine its reasonable distribution is the basis for studying the coal spontaneous combustion hazardous area and migration law of gas products. A discrete fracture-pore model of gob in shallow buried coal seams is being proposed, which is based on the periodic pressure of the overburden, the key strata theory and the compression deformation of the broken rock mass. The model consists of a porous medium media and a discrete fracture network, and calculation equation for the porous medium and the crack width is granted. Taking the Bulianta mine as the background, the model was introduced into FLUENT to simulate the oxygen concentration field, the carbon monoxide concentration field and wind velocity field in the gob. The simulation results agreed well with the measured oxygen concentrations in the field. The spontaneous combustion danger zone and the law of carbon monoxide accumulation in gob are obtained by simulation. In the lower coal seam gob, the maximum width of the spontaneous combustion hazard zone is 108.67m, and the maximum width is 104.94m from the return air side of the gob, and its area is calculated to be 14,645 m2. In the upper coal seam gob, there is basically no spontaneous combustion danger zone that simultaneously meets wind speed and oxygen concentration. However, the oxygen concentration in most areas of the upper gob is between 8% and 18%. In order to prevent the formation of spontaneous combustion danger zone, it is necessary to take corresponding measures for the location with large surface cracks. The concentration of carbon monoxide in the lower gob is greater than the concentration of carbon monoxide in the upper gob. For upper gob, the distribution of carbon monoxide concentration is mainly affected by ground air leakage; for the lower gob, the distribution of carbon monoxide concentration is mainly affected by air leakage of working face.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete fracture-pore model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shallow buried coal seams</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spontaneous combustion hazard zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air leakage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Botao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Qinghe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Zhiwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Process safety and environmental protection</subfield><subfield code="d">Amsterdam : Elsevier, 1990</subfield><subfield code="g">131, Seite 246-254</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)318710420</subfield><subfield code="w">(DE-600)2008004-9</subfield><subfield code="w">(DE-576)284747785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:131</subfield><subfield code="g">pages:246-254</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.18</subfield><subfield code="j">Chemische Betriebstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">131</subfield><subfield code="h">246-254</subfield></datafield></record></collection>
|
score |
7.400943 |