A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms
Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-b...
Ausführliche Beschreibung
Autor*in: |
Rozas, Heraldo [verfasserIn] Jaramillo, Francisco [verfasserIn] Perez, Aramis [verfasserIn] Jimenez, Diego [verfasserIn] Orchard, Marcos E. [verfasserIn] Medjaher, Kamal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Mechanical systems and signal processing - Amsterdam [u.a.] : Elsevier, 1987, 135 |
---|---|
Übergeordnetes Werk: |
volume:135 |
DOI / URN: |
10.1016/j.ymssp.2019.106421 |
---|
Katalog-ID: |
ELV003102580 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003102580 | ||
003 | DE-627 | ||
005 | 20230524154746.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ymssp.2019.106421 |2 doi | |
035 | |a (DE-627)ELV003102580 | ||
035 | |a (ELSEVIER)S0888-3270(19)30642-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 50.32 |2 bkl | ||
084 | |a 50.16 |2 bkl | ||
100 | 1 | |a Rozas, Heraldo |e verfasserin |4 aut | |
245 | 1 | 0 | |a A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy. | ||
650 | 4 | |a Prognostic algorithms | |
650 | 4 | |a Time-of-Failure probability distribution | |
650 | 4 | |a Online performance assessment | |
700 | 1 | |a Jaramillo, Francisco |e verfasserin |4 aut | |
700 | 1 | |a Perez, Aramis |e verfasserin |0 (orcid)0000-0002-6783-2659 |4 aut | |
700 | 1 | |a Jimenez, Diego |e verfasserin |4 aut | |
700 | 1 | |a Orchard, Marcos E. |e verfasserin |4 aut | |
700 | 1 | |a Medjaher, Kamal |e verfasserin |0 (orcid)0000-0001-7895-5569 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mechanical systems and signal processing |d Amsterdam [u.a.] : Elsevier, 1987 |g 135 |h Online-Ressource |w (DE-627)267838670 |w (DE-600)1471003-1 |w (DE-576)253127629 |x 1096-1216 |7 nnns |
773 | 1 | 8 | |g volume:135 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.32 |j Dynamik |j Schwingungslehre |x Technische Mechanik |
936 | b | k | |a 50.16 |j Technische Zuverlässigkeit |j Instandhaltung |
951 | |a AR | ||
952 | |d 135 |
author_variant |
h r hr f j fj a p ap d j dj m e o me meo k m km |
---|---|
matchkey_str |
article:10961216:2019----::mtofrhrdcinfhcmuainlotsoitdihhipeettooprilfle |
hierarchy_sort_str |
2019 |
bklnumber |
50.32 50.16 |
publishDate |
2019 |
allfields |
10.1016/j.ymssp.2019.106421 doi (DE-627)ELV003102580 (ELSEVIER)S0888-3270(19)30642-9 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Rozas, Heraldo verfasserin aut A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy. Prognostic algorithms Time-of-Failure probability distribution Online performance assessment Jaramillo, Francisco verfasserin aut Perez, Aramis verfasserin (orcid)0000-0002-6783-2659 aut Jimenez, Diego verfasserin aut Orchard, Marcos E. verfasserin aut Medjaher, Kamal verfasserin (orcid)0000-0001-7895-5569 aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 135 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:135 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 135 |
spelling |
10.1016/j.ymssp.2019.106421 doi (DE-627)ELV003102580 (ELSEVIER)S0888-3270(19)30642-9 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Rozas, Heraldo verfasserin aut A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy. Prognostic algorithms Time-of-Failure probability distribution Online performance assessment Jaramillo, Francisco verfasserin aut Perez, Aramis verfasserin (orcid)0000-0002-6783-2659 aut Jimenez, Diego verfasserin aut Orchard, Marcos E. verfasserin aut Medjaher, Kamal verfasserin (orcid)0000-0001-7895-5569 aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 135 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:135 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 135 |
allfields_unstemmed |
10.1016/j.ymssp.2019.106421 doi (DE-627)ELV003102580 (ELSEVIER)S0888-3270(19)30642-9 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Rozas, Heraldo verfasserin aut A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy. Prognostic algorithms Time-of-Failure probability distribution Online performance assessment Jaramillo, Francisco verfasserin aut Perez, Aramis verfasserin (orcid)0000-0002-6783-2659 aut Jimenez, Diego verfasserin aut Orchard, Marcos E. verfasserin aut Medjaher, Kamal verfasserin (orcid)0000-0001-7895-5569 aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 135 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:135 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 135 |
allfieldsGer |
10.1016/j.ymssp.2019.106421 doi (DE-627)ELV003102580 (ELSEVIER)S0888-3270(19)30642-9 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Rozas, Heraldo verfasserin aut A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy. Prognostic algorithms Time-of-Failure probability distribution Online performance assessment Jaramillo, Francisco verfasserin aut Perez, Aramis verfasserin (orcid)0000-0002-6783-2659 aut Jimenez, Diego verfasserin aut Orchard, Marcos E. verfasserin aut Medjaher, Kamal verfasserin (orcid)0000-0001-7895-5569 aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 135 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:135 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 135 |
allfieldsSound |
10.1016/j.ymssp.2019.106421 doi (DE-627)ELV003102580 (ELSEVIER)S0888-3270(19)30642-9 DE-627 ger DE-627 rda eng 004 DE-600 50.32 bkl 50.16 bkl Rozas, Heraldo verfasserin aut A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy. Prognostic algorithms Time-of-Failure probability distribution Online performance assessment Jaramillo, Francisco verfasserin aut Perez, Aramis verfasserin (orcid)0000-0002-6783-2659 aut Jimenez, Diego verfasserin aut Orchard, Marcos E. verfasserin aut Medjaher, Kamal verfasserin (orcid)0000-0001-7895-5569 aut Enthalten in Mechanical systems and signal processing Amsterdam [u.a.] : Elsevier, 1987 135 Online-Ressource (DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 1096-1216 nnns volume:135 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.32 Dynamik Schwingungslehre Technische Mechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 135 |
language |
English |
source |
Enthalten in Mechanical systems and signal processing 135 volume:135 |
sourceStr |
Enthalten in Mechanical systems and signal processing 135 volume:135 |
format_phy_str_mv |
Article |
bklname |
Dynamik Schwingungslehre Technische Zuverlässigkeit Instandhaltung |
institution |
findex.gbv.de |
topic_facet |
Prognostic algorithms Time-of-Failure probability distribution Online performance assessment |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Mechanical systems and signal processing |
authorswithroles_txt_mv |
Rozas, Heraldo @@aut@@ Jaramillo, Francisco @@aut@@ Perez, Aramis @@aut@@ Jimenez, Diego @@aut@@ Orchard, Marcos E. @@aut@@ Medjaher, Kamal @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
267838670 |
dewey-sort |
14 |
id |
ELV003102580 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003102580</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2019.106421</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003102580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(19)30642-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rozas, Heraldo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prognostic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-of-Failure probability distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online performance assessment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaramillo, Francisco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perez, Aramis</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6783-2659</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jimenez, Diego</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orchard, Marcos E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medjaher, Kamal</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7895-5569</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanical systems and signal processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1987</subfield><subfield code="g">135</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267838670</subfield><subfield code="w">(DE-600)1471003-1</subfield><subfield code="w">(DE-576)253127629</subfield><subfield code="x">1096-1216</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield></datafield></record></collection>
|
author |
Rozas, Heraldo |
spellingShingle |
Rozas, Heraldo ddc 004 bkl 50.32 bkl 50.16 misc Prognostic algorithms misc Time-of-Failure probability distribution misc Online performance assessment A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms |
authorStr |
Rozas, Heraldo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)267838670 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1096-1216 |
topic_title |
004 DE-600 50.32 bkl 50.16 bkl A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms Prognostic algorithms Time-of-Failure probability distribution Online performance assessment |
topic |
ddc 004 bkl 50.32 bkl 50.16 misc Prognostic algorithms misc Time-of-Failure probability distribution misc Online performance assessment |
topic_unstemmed |
ddc 004 bkl 50.32 bkl 50.16 misc Prognostic algorithms misc Time-of-Failure probability distribution misc Online performance assessment |
topic_browse |
ddc 004 bkl 50.32 bkl 50.16 misc Prognostic algorithms misc Time-of-Failure probability distribution misc Online performance assessment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mechanical systems and signal processing |
hierarchy_parent_id |
267838670 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Mechanical systems and signal processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)267838670 (DE-600)1471003-1 (DE-576)253127629 |
title |
A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms |
ctrlnum |
(DE-627)ELV003102580 (ELSEVIER)S0888-3270(19)30642-9 |
title_full |
A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms |
author_sort |
Rozas, Heraldo |
journal |
Mechanical systems and signal processing |
journalStr |
Mechanical systems and signal processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Rozas, Heraldo Jaramillo, Francisco Perez, Aramis Jimenez, Diego Orchard, Marcos E. Medjaher, Kamal |
container_volume |
135 |
class |
004 DE-600 50.32 bkl 50.16 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Rozas, Heraldo |
doi_str_mv |
10.1016/j.ymssp.2019.106421 |
normlink |
(ORCID)0000-0002-6783-2659 (ORCID)0000-0001-7895-5569 |
normlink_prefix_str_mv |
(orcid)0000-0002-6783-2659 (orcid)0000-0001-7895-5569 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
a method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms |
title_auth |
A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms |
abstract |
Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy. |
abstractGer |
Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy. |
abstract_unstemmed |
Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms |
remote_bool |
true |
author2 |
Jaramillo, Francisco Perez, Aramis Jimenez, Diego Orchard, Marcos E. Medjaher, Kamal |
author2Str |
Jaramillo, Francisco Perez, Aramis Jimenez, Diego Orchard, Marcos E. Medjaher, Kamal |
ppnlink |
267838670 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ymssp.2019.106421 |
up_date |
2024-07-06T18:29:56.421Z |
_version_ |
1803855432434843648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003102580</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2019.106421</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003102580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(19)30642-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rozas, Heraldo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prognostic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-of-Failure probability distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online performance assessment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaramillo, Francisco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perez, Aramis</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6783-2659</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jimenez, Diego</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orchard, Marcos E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medjaher, Kamal</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7895-5569</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanical systems and signal processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1987</subfield><subfield code="g">135</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267838670</subfield><subfield code="w">(DE-600)1471003-1</subfield><subfield code="w">(DE-576)253127629</subfield><subfield code="x">1096-1216</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield></datafield></record></collection>
|
score |
7.402525 |