Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms
Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Fa...
Ausführliche Beschreibung
Autor*in: |
Ozguven, Mehmet Metin [verfasserIn] Adem, Kemal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Physica / A - Amsterdam : North Holland Publ. Co., 1975, 535 |
---|---|
Übergeordnetes Werk: |
volume:535 |
DOI / URN: |
10.1016/j.physa.2019.122537 |
---|
Katalog-ID: |
ELV003115569 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003115569 | ||
003 | DE-627 | ||
005 | 20230524143656.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.physa.2019.122537 |2 doi | |
035 | |a (DE-627)ELV003115569 | ||
035 | |a (ELSEVIER)S0378-4371(19)31452-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q DE-600 |
084 | |a 33.25 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Ozguven, Mehmet Metin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease. | ||
650 | 4 | |a Sugar beet | |
650 | 4 | |a Leaf spot disease | |
650 | 4 | |a CNN | |
650 | 4 | |a Faster R-CNN | |
700 | 1 | |a Adem, Kemal |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Physica / A |d Amsterdam : North Holland Publ. Co., 1975 |g 535 |h Online-Ressource |w (DE-627)266015077 |w (DE-600)1466577-3 |w (DE-576)074959832 |x 1873-2119 |7 nnns |
773 | 1 | 8 | |g volume:535 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.25 |j Thermodynamik |j statistische Physik |
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |
951 | |a AR | ||
952 | |d 535 |
author_variant |
m m o mm mmo k a ka |
---|---|
matchkey_str |
article:18732119:2019----::uoaidtcinncasfctoolasodsaenuabeui |
hierarchy_sort_str |
2019 |
bklnumber |
33.25 31.00 |
publishDate |
2019 |
allfields |
10.1016/j.physa.2019.122537 doi (DE-627)ELV003115569 (ELSEVIER)S0378-4371(19)31452-9 DE-627 ger DE-627 rda eng 500 DE-600 33.25 bkl 31.00 bkl Ozguven, Mehmet Metin verfasserin aut Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease. Sugar beet Leaf spot disease CNN Faster R-CNN Adem, Kemal verfasserin aut Enthalten in Physica / A Amsterdam : North Holland Publ. Co., 1975 535 Online-Ressource (DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 1873-2119 nnns volume:535 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 535 |
spelling |
10.1016/j.physa.2019.122537 doi (DE-627)ELV003115569 (ELSEVIER)S0378-4371(19)31452-9 DE-627 ger DE-627 rda eng 500 DE-600 33.25 bkl 31.00 bkl Ozguven, Mehmet Metin verfasserin aut Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease. Sugar beet Leaf spot disease CNN Faster R-CNN Adem, Kemal verfasserin aut Enthalten in Physica / A Amsterdam : North Holland Publ. Co., 1975 535 Online-Ressource (DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 1873-2119 nnns volume:535 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 535 |
allfields_unstemmed |
10.1016/j.physa.2019.122537 doi (DE-627)ELV003115569 (ELSEVIER)S0378-4371(19)31452-9 DE-627 ger DE-627 rda eng 500 DE-600 33.25 bkl 31.00 bkl Ozguven, Mehmet Metin verfasserin aut Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease. Sugar beet Leaf spot disease CNN Faster R-CNN Adem, Kemal verfasserin aut Enthalten in Physica / A Amsterdam : North Holland Publ. Co., 1975 535 Online-Ressource (DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 1873-2119 nnns volume:535 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 535 |
allfieldsGer |
10.1016/j.physa.2019.122537 doi (DE-627)ELV003115569 (ELSEVIER)S0378-4371(19)31452-9 DE-627 ger DE-627 rda eng 500 DE-600 33.25 bkl 31.00 bkl Ozguven, Mehmet Metin verfasserin aut Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease. Sugar beet Leaf spot disease CNN Faster R-CNN Adem, Kemal verfasserin aut Enthalten in Physica / A Amsterdam : North Holland Publ. Co., 1975 535 Online-Ressource (DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 1873-2119 nnns volume:535 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 535 |
allfieldsSound |
10.1016/j.physa.2019.122537 doi (DE-627)ELV003115569 (ELSEVIER)S0378-4371(19)31452-9 DE-627 ger DE-627 rda eng 500 DE-600 33.25 bkl 31.00 bkl Ozguven, Mehmet Metin verfasserin aut Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease. Sugar beet Leaf spot disease CNN Faster R-CNN Adem, Kemal verfasserin aut Enthalten in Physica / A Amsterdam : North Holland Publ. Co., 1975 535 Online-Ressource (DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 1873-2119 nnns volume:535 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 535 |
language |
English |
source |
Enthalten in Physica / A 535 volume:535 |
sourceStr |
Enthalten in Physica / A 535 volume:535 |
format_phy_str_mv |
Article |
bklname |
Thermodynamik statistische Physik Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Sugar beet Leaf spot disease CNN Faster R-CNN |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Physica / A |
authorswithroles_txt_mv |
Ozguven, Mehmet Metin @@aut@@ Adem, Kemal @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
266015077 |
dewey-sort |
3500 |
id |
ELV003115569 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003115569</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143656.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physa.2019.122537</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003115569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-4371(19)31452-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ozguven, Mehmet Metin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sugar beet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leaf spot disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Faster R-CNN</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adem, Kemal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physica / A</subfield><subfield code="d">Amsterdam : North Holland Publ. Co., 1975</subfield><subfield code="g">535</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266015077</subfield><subfield code="w">(DE-600)1466577-3</subfield><subfield code="w">(DE-576)074959832</subfield><subfield code="x">1873-2119</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:535</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">535</subfield></datafield></record></collection>
|
author |
Ozguven, Mehmet Metin |
spellingShingle |
Ozguven, Mehmet Metin ddc 500 bkl 33.25 bkl 31.00 misc Sugar beet misc Leaf spot disease misc CNN misc Faster R-CNN Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms |
authorStr |
Ozguven, Mehmet Metin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266015077 |
format |
electronic Article |
dewey-ones |
500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2119 |
topic_title |
500 DE-600 33.25 bkl 31.00 bkl Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms Sugar beet Leaf spot disease CNN Faster R-CNN |
topic |
ddc 500 bkl 33.25 bkl 31.00 misc Sugar beet misc Leaf spot disease misc CNN misc Faster R-CNN |
topic_unstemmed |
ddc 500 bkl 33.25 bkl 31.00 misc Sugar beet misc Leaf spot disease misc CNN misc Faster R-CNN |
topic_browse |
ddc 500 bkl 33.25 bkl 31.00 misc Sugar beet misc Leaf spot disease misc CNN misc Faster R-CNN |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physica / A |
hierarchy_parent_id |
266015077 |
dewey-tens |
500 - Science |
hierarchy_top_title |
Physica / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266015077 (DE-600)1466577-3 (DE-576)074959832 |
title |
Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms |
ctrlnum |
(DE-627)ELV003115569 (ELSEVIER)S0378-4371(19)31452-9 |
title_full |
Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms |
author_sort |
Ozguven, Mehmet Metin |
journal |
Physica / A |
journalStr |
Physica / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Ozguven, Mehmet Metin Adem, Kemal |
container_volume |
535 |
class |
500 DE-600 33.25 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ozguven, Mehmet Metin |
doi_str_mv |
10.1016/j.physa.2019.122537 |
dewey-full |
500 |
author2-role |
verfasserin |
title_sort |
automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms |
title_auth |
Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms |
abstract |
Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease. |
abstractGer |
Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease. |
abstract_unstemmed |
Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms |
remote_bool |
true |
author2 |
Adem, Kemal |
author2Str |
Adem, Kemal |
ppnlink |
266015077 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.physa.2019.122537 |
up_date |
2024-07-06T18:32:33.272Z |
_version_ |
1803855596905037824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003115569</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143656.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physa.2019.122537</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003115569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-4371(19)31452-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ozguven, Mehmet Metin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Depending on the severity of the leaf spot disease in the field, it can cause a loss in sugar yield by 10% to 50%. Therefore, disease symptoms should be detected on-time and relevant measures should be taken instantly to prevent further spread or progress of the disease. In this study, an Updated Faster R-CNN architecture developed by changing the parameters of a CNN model and a Faster R-CNN architecture for automatic detection of leaf spot disease (Cercospora beticola Sacc.) in sugar beet were proposed. The method, proposed for the detection of disease severity by imaging-based expert systems, was trained and tested with 155 images and according to the test results, the overall correct classification rate was found to be 95.48%. In addition, the proposed approach showed that changes in CNN parameters according to the image and regions to be detected could increase the success of Faster R-CNN architecture. The proposed approach yielded better outcomes for relevant parameters than the modern methods specified in previous literature. Therefore, it is believed that the method will reduce the time spent in diagnosis of sugar beet leaf spot disease in the large production areas as well as reducing the human error and time to identify the severity and course of the disease.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sugar beet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leaf spot disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Faster R-CNN</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adem, Kemal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physica / A</subfield><subfield code="d">Amsterdam : North Holland Publ. Co., 1975</subfield><subfield code="g">535</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266015077</subfield><subfield code="w">(DE-600)1466577-3</subfield><subfield code="w">(DE-576)074959832</subfield><subfield code="x">1873-2119</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:535</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">535</subfield></datafield></record></collection>
|
score |
7.401513 |