An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts
Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental moni...
Ausführliche Beschreibung
Autor*in: |
Janßen, René [verfasserIn] Zabel, Jakob [verfasserIn] von Lukas, Uwe [verfasserIn] Labrenz, Matthias [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Marine pollution bulletin - Amsterdam [u.a.] : Elsevier Science, 1970, 149 |
---|---|
Übergeordnetes Werk: |
volume:149 |
DOI / URN: |
10.1016/j.marpolbul.2019.110530 |
---|
Katalog-ID: |
ELV003199975 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003199975 | ||
003 | DE-627 | ||
005 | 20230524145244.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.marpolbul.2019.110530 |2 doi | |
035 | |a (DE-627)ELV003199975 | ||
035 | |a (ELSEVIER)S0025-326X(19)30668-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 333.7 |q DE-600 |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 38.90 |2 bkl | ||
084 | |a 43.50 |2 bkl | ||
100 | 1 | |a Janßen, René |e verfasserin |0 (orcid)0000-0002-0605-6860 |4 aut | |
245 | 1 | 0 | |a An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental monitoring efforts of contamination events. Models were trained on taxon count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the taxa primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species for glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data. | ||
650 | 4 | |a ANN | |
650 | 4 | |a Glyphosate | |
650 | 4 | |a NGS | |
650 | 4 | |a Monitoring | |
650 | 4 | |a Microbial community composition | |
650 | 4 | |a Baltic Sea | |
700 | 1 | |a Zabel, Jakob |e verfasserin |4 aut | |
700 | 1 | |a von Lukas, Uwe |e verfasserin |4 aut | |
700 | 1 | |a Labrenz, Matthias |e verfasserin |0 (orcid)0000-0003-3452-8631 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Marine pollution bulletin |d Amsterdam [u.a.] : Elsevier Science, 1970 |g 149 |h Online-Ressource |w (DE-627)320410897 |w (DE-600)2001296-2 |w (DE-576)259484415 |x 1879-3363 |7 nnns |
773 | 1 | 8 | |g volume:149 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.90 |j Ozeanologie |j Ozeanographie |
936 | b | k | |a 43.50 |j Umweltbelastungen |
951 | |a AR | ||
952 | |d 149 |
author_variant |
r j rj j z jz l u v lu luv m l ml |
---|---|
matchkey_str |
article:18793363:2019----::nriiilerlewradadmoetdniylpoaematdrcihomntebsd |
hierarchy_sort_str |
2019 |
bklnumber |
38.90 43.50 |
publishDate |
2019 |
allfields |
10.1016/j.marpolbul.2019.110530 doi (DE-627)ELV003199975 (ELSEVIER)S0025-326X(19)30668-X DE-627 ger DE-627 rda eng 550 333.7 DE-600 BIODIV DE-30 fid 38.90 bkl 43.50 bkl Janßen, René verfasserin (orcid)0000-0002-0605-6860 aut An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental monitoring efforts of contamination events. Models were trained on taxon count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the taxa primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species for glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data. ANN Glyphosate NGS Monitoring Microbial community composition Baltic Sea Zabel, Jakob verfasserin aut von Lukas, Uwe verfasserin aut Labrenz, Matthias verfasserin (orcid)0000-0003-3452-8631 aut Enthalten in Marine pollution bulletin Amsterdam [u.a.] : Elsevier Science, 1970 149 Online-Ressource (DE-627)320410897 (DE-600)2001296-2 (DE-576)259484415 1879-3363 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.90 Ozeanologie Ozeanographie 43.50 Umweltbelastungen AR 149 |
spelling |
10.1016/j.marpolbul.2019.110530 doi (DE-627)ELV003199975 (ELSEVIER)S0025-326X(19)30668-X DE-627 ger DE-627 rda eng 550 333.7 DE-600 BIODIV DE-30 fid 38.90 bkl 43.50 bkl Janßen, René verfasserin (orcid)0000-0002-0605-6860 aut An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental monitoring efforts of contamination events. Models were trained on taxon count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the taxa primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species for glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data. ANN Glyphosate NGS Monitoring Microbial community composition Baltic Sea Zabel, Jakob verfasserin aut von Lukas, Uwe verfasserin aut Labrenz, Matthias verfasserin (orcid)0000-0003-3452-8631 aut Enthalten in Marine pollution bulletin Amsterdam [u.a.] : Elsevier Science, 1970 149 Online-Ressource (DE-627)320410897 (DE-600)2001296-2 (DE-576)259484415 1879-3363 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.90 Ozeanologie Ozeanographie 43.50 Umweltbelastungen AR 149 |
allfields_unstemmed |
10.1016/j.marpolbul.2019.110530 doi (DE-627)ELV003199975 (ELSEVIER)S0025-326X(19)30668-X DE-627 ger DE-627 rda eng 550 333.7 DE-600 BIODIV DE-30 fid 38.90 bkl 43.50 bkl Janßen, René verfasserin (orcid)0000-0002-0605-6860 aut An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental monitoring efforts of contamination events. Models were trained on taxon count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the taxa primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species for glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data. ANN Glyphosate NGS Monitoring Microbial community composition Baltic Sea Zabel, Jakob verfasserin aut von Lukas, Uwe verfasserin aut Labrenz, Matthias verfasserin (orcid)0000-0003-3452-8631 aut Enthalten in Marine pollution bulletin Amsterdam [u.a.] : Elsevier Science, 1970 149 Online-Ressource (DE-627)320410897 (DE-600)2001296-2 (DE-576)259484415 1879-3363 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.90 Ozeanologie Ozeanographie 43.50 Umweltbelastungen AR 149 |
allfieldsGer |
10.1016/j.marpolbul.2019.110530 doi (DE-627)ELV003199975 (ELSEVIER)S0025-326X(19)30668-X DE-627 ger DE-627 rda eng 550 333.7 DE-600 BIODIV DE-30 fid 38.90 bkl 43.50 bkl Janßen, René verfasserin (orcid)0000-0002-0605-6860 aut An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental monitoring efforts of contamination events. Models were trained on taxon count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the taxa primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species for glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data. ANN Glyphosate NGS Monitoring Microbial community composition Baltic Sea Zabel, Jakob verfasserin aut von Lukas, Uwe verfasserin aut Labrenz, Matthias verfasserin (orcid)0000-0003-3452-8631 aut Enthalten in Marine pollution bulletin Amsterdam [u.a.] : Elsevier Science, 1970 149 Online-Ressource (DE-627)320410897 (DE-600)2001296-2 (DE-576)259484415 1879-3363 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.90 Ozeanologie Ozeanographie 43.50 Umweltbelastungen AR 149 |
allfieldsSound |
10.1016/j.marpolbul.2019.110530 doi (DE-627)ELV003199975 (ELSEVIER)S0025-326X(19)30668-X DE-627 ger DE-627 rda eng 550 333.7 DE-600 BIODIV DE-30 fid 38.90 bkl 43.50 bkl Janßen, René verfasserin (orcid)0000-0002-0605-6860 aut An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental monitoring efforts of contamination events. Models were trained on taxon count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the taxa primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species for glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data. ANN Glyphosate NGS Monitoring Microbial community composition Baltic Sea Zabel, Jakob verfasserin aut von Lukas, Uwe verfasserin aut Labrenz, Matthias verfasserin (orcid)0000-0003-3452-8631 aut Enthalten in Marine pollution bulletin Amsterdam [u.a.] : Elsevier Science, 1970 149 Online-Ressource (DE-627)320410897 (DE-600)2001296-2 (DE-576)259484415 1879-3363 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.90 Ozeanologie Ozeanographie 43.50 Umweltbelastungen AR 149 |
language |
English |
source |
Enthalten in Marine pollution bulletin 149 volume:149 |
sourceStr |
Enthalten in Marine pollution bulletin 149 volume:149 |
format_phy_str_mv |
Article |
bklname |
Ozeanologie Ozeanographie Umweltbelastungen |
institution |
findex.gbv.de |
topic_facet |
ANN Glyphosate NGS Monitoring Microbial community composition Baltic Sea |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Marine pollution bulletin |
authorswithroles_txt_mv |
Janßen, René @@aut@@ Zabel, Jakob @@aut@@ von Lukas, Uwe @@aut@@ Labrenz, Matthias @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320410897 |
dewey-sort |
3550 |
id |
ELV003199975 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003199975</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.marpolbul.2019.110530</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003199975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0025-326X(19)30668-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">333.7</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Janßen, René</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0605-6860</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental monitoring efforts of contamination events. Models were trained on taxon count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the taxa primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species for glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ANN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glyphosate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NGS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial community composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Baltic Sea</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zabel, Jakob</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">von Lukas, Uwe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Labrenz, Matthias</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3452-8631</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Marine pollution bulletin</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">149</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320410897</subfield><subfield code="w">(DE-600)2001296-2</subfield><subfield code="w">(DE-576)259484415</subfield><subfield code="x">1879-3363</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.90</subfield><subfield code="j">Ozeanologie</subfield><subfield code="j">Ozeanographie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="j">Umweltbelastungen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield></datafield></record></collection>
|
author |
Janßen, René |
spellingShingle |
Janßen, René ddc 550 fid BIODIV bkl 38.90 bkl 43.50 misc ANN misc Glyphosate misc NGS misc Monitoring misc Microbial community composition misc Baltic Sea An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts |
authorStr |
Janßen, René |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320410897 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-3363 |
topic_title |
550 333.7 DE-600 BIODIV DE-30 fid 38.90 bkl 43.50 bkl An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts ANN Glyphosate NGS Monitoring Microbial community composition Baltic Sea |
topic |
ddc 550 fid BIODIV bkl 38.90 bkl 43.50 misc ANN misc Glyphosate misc NGS misc Monitoring misc Microbial community composition misc Baltic Sea |
topic_unstemmed |
ddc 550 fid BIODIV bkl 38.90 bkl 43.50 misc ANN misc Glyphosate misc NGS misc Monitoring misc Microbial community composition misc Baltic Sea |
topic_browse |
ddc 550 fid BIODIV bkl 38.90 bkl 43.50 misc ANN misc Glyphosate misc NGS misc Monitoring misc Microbial community composition misc Baltic Sea |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Marine pollution bulletin |
hierarchy_parent_id |
320410897 |
dewey-tens |
550 - Earth sciences & geology 330 - Economics |
hierarchy_top_title |
Marine pollution bulletin |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320410897 (DE-600)2001296-2 (DE-576)259484415 |
title |
An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts |
ctrlnum |
(DE-627)ELV003199975 (ELSEVIER)S0025-326X(19)30668-X |
title_full |
An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts |
author_sort |
Janßen, René |
journal |
Marine pollution bulletin |
journalStr |
Marine pollution bulletin |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Janßen, René Zabel, Jakob von Lukas, Uwe Labrenz, Matthias |
container_volume |
149 |
class |
550 333.7 DE-600 BIODIV DE-30 fid 38.90 bkl 43.50 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Janßen, René |
doi_str_mv |
10.1016/j.marpolbul.2019.110530 |
normlink |
(ORCID)0000-0002-0605-6860 (ORCID)0000-0003-3452-8631 |
normlink_prefix_str_mv |
(orcid)0000-0002-0605-6860 (orcid)0000-0003-3452-8631 |
dewey-full |
550 333.7 |
author2-role |
verfasserin |
title_sort |
an artificial neural network and random forest identify glyphosate-impacted brackish communities based on 16s rrna amplicon miseq read counts |
title_auth |
An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts |
abstract |
Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental monitoring efforts of contamination events. Models were trained on taxon count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the taxa primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species for glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data. |
abstractGer |
Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental monitoring efforts of contamination events. Models were trained on taxon count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the taxa primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species for glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data. |
abstract_unstemmed |
Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental monitoring efforts of contamination events. Models were trained on taxon count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the taxa primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species for glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts |
remote_bool |
true |
author2 |
Zabel, Jakob von Lukas, Uwe Labrenz, Matthias |
author2Str |
Zabel, Jakob von Lukas, Uwe Labrenz, Matthias |
ppnlink |
320410897 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.marpolbul.2019.110530 |
up_date |
2024-07-06T18:49:42.406Z |
_version_ |
1803856676029202432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003199975</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.marpolbul.2019.110530</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003199975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0025-326X(19)30668-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">333.7</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Janßen, René</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0605-6860</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental monitoring efforts of contamination events. Models were trained on taxon count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the taxa primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species for glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ANN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glyphosate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NGS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial community composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Baltic Sea</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zabel, Jakob</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">von Lukas, Uwe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Labrenz, Matthias</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3452-8631</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Marine pollution bulletin</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">149</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320410897</subfield><subfield code="w">(DE-600)2001296-2</subfield><subfield code="w">(DE-576)259484415</subfield><subfield code="x">1879-3363</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.90</subfield><subfield code="j">Ozeanologie</subfield><subfield code="j">Ozeanographie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="j">Umweltbelastungen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield></datafield></record></collection>
|
score |
7.3993254 |