An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts

Machine learning algorithms can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network in comparison to a Random Forest model to detect induced changes in microbial communities, in order to support environmental moni...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Janßen, René [verfasserIn]

Zabel, Jakob [verfasserIn]

von Lukas, Uwe [verfasserIn]

Labrenz, Matthias [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2019

Schlagwörter:

ANN

Glyphosate

NGS

Monitoring

Microbial community composition

Baltic Sea

Übergeordnetes Werk:

Enthalten in: Marine pollution bulletin - Amsterdam [u.a.] : Elsevier Science, 1970, 149

Übergeordnetes Werk:

volume:149

DOI / URN:

10.1016/j.marpolbul.2019.110530

Katalog-ID:

ELV003199975

Nicht das Richtige dabei?

Schreiben Sie uns!