Multi-class twitter data categorization and geocoding with a novel computing framework
This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier...
Ausführliche Beschreibung
Autor*in: |
Khan, Sakib Mahmud [verfasserIn] Chowdhury, Mashrur [verfasserIn] Ngo, Linh B. [verfasserIn] Apon, Amy [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Cities - Amsterdam [u.a.] : Elsevier Science, 1983, 96 |
---|---|
Übergeordnetes Werk: |
volume:96 |
DOI / URN: |
10.1016/j.cities.2019.102410 |
---|
Katalog-ID: |
ELV003209954 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003209954 | ||
003 | DE-627 | ||
005 | 20230524164410.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cities.2019.102410 |2 doi | |
035 | |a (DE-627)ELV003209954 | ||
035 | |a (ELSEVIER)S0264-2751(18)31431-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 74.12 |2 bkl | ||
084 | |a 74.72 |2 bkl | ||
100 | 1 | |a Khan, Sakib Mahmud |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multi-class twitter data categorization and geocoding with a novel computing framework |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM. | ||
650 | 4 | |a Social media | |
650 | 4 | |a New York | |
650 | 4 | |a Traffic operation | |
650 | 4 | |a Short-term planning | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Traffic management policy | |
700 | 1 | |a Chowdhury, Mashrur |e verfasserin |4 aut | |
700 | 1 | |a Ngo, Linh B. |e verfasserin |4 aut | |
700 | 1 | |a Apon, Amy |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cities |d Amsterdam [u.a.] : Elsevier Science, 1983 |g 96 |h Online-Ressource |w (DE-627)320412881 |w (DE-600)2001540-9 |w (DE-576)098330306 |x 0264-2751 |7 nnns |
773 | 1 | 8 | |g volume:96 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 74.12 |j Stadtgeographie |j Siedlungsgeographie |
936 | b | k | |a 74.72 |j Stadtplanung |j kommunale Planung |
951 | |a AR | ||
952 | |d 96 |
author_variant |
s m k sm smk m c mc l b n lb lbn a a aa |
---|---|
matchkey_str |
article:02642751:2019----::utcaswtedtctgrztoadecdnwtao |
hierarchy_sort_str |
2019 |
bklnumber |
74.12 74.72 |
publishDate |
2019 |
allfields |
10.1016/j.cities.2019.102410 doi (DE-627)ELV003209954 (ELSEVIER)S0264-2751(18)31431-8 DE-627 ger DE-627 rda eng 690 DE-600 74.12 bkl 74.72 bkl Khan, Sakib Mahmud verfasserin aut Multi-class twitter data categorization and geocoding with a novel computing framework 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM. Social media New York Traffic operation Short-term planning Machine learning Traffic management policy Chowdhury, Mashrur verfasserin aut Ngo, Linh B. verfasserin aut Apon, Amy verfasserin aut Enthalten in Cities Amsterdam [u.a.] : Elsevier Science, 1983 96 Online-Ressource (DE-627)320412881 (DE-600)2001540-9 (DE-576)098330306 0264-2751 nnns volume:96 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 74.12 Stadtgeographie Siedlungsgeographie 74.72 Stadtplanung kommunale Planung AR 96 |
spelling |
10.1016/j.cities.2019.102410 doi (DE-627)ELV003209954 (ELSEVIER)S0264-2751(18)31431-8 DE-627 ger DE-627 rda eng 690 DE-600 74.12 bkl 74.72 bkl Khan, Sakib Mahmud verfasserin aut Multi-class twitter data categorization and geocoding with a novel computing framework 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM. Social media New York Traffic operation Short-term planning Machine learning Traffic management policy Chowdhury, Mashrur verfasserin aut Ngo, Linh B. verfasserin aut Apon, Amy verfasserin aut Enthalten in Cities Amsterdam [u.a.] : Elsevier Science, 1983 96 Online-Ressource (DE-627)320412881 (DE-600)2001540-9 (DE-576)098330306 0264-2751 nnns volume:96 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 74.12 Stadtgeographie Siedlungsgeographie 74.72 Stadtplanung kommunale Planung AR 96 |
allfields_unstemmed |
10.1016/j.cities.2019.102410 doi (DE-627)ELV003209954 (ELSEVIER)S0264-2751(18)31431-8 DE-627 ger DE-627 rda eng 690 DE-600 74.12 bkl 74.72 bkl Khan, Sakib Mahmud verfasserin aut Multi-class twitter data categorization and geocoding with a novel computing framework 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM. Social media New York Traffic operation Short-term planning Machine learning Traffic management policy Chowdhury, Mashrur verfasserin aut Ngo, Linh B. verfasserin aut Apon, Amy verfasserin aut Enthalten in Cities Amsterdam [u.a.] : Elsevier Science, 1983 96 Online-Ressource (DE-627)320412881 (DE-600)2001540-9 (DE-576)098330306 0264-2751 nnns volume:96 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 74.12 Stadtgeographie Siedlungsgeographie 74.72 Stadtplanung kommunale Planung AR 96 |
allfieldsGer |
10.1016/j.cities.2019.102410 doi (DE-627)ELV003209954 (ELSEVIER)S0264-2751(18)31431-8 DE-627 ger DE-627 rda eng 690 DE-600 74.12 bkl 74.72 bkl Khan, Sakib Mahmud verfasserin aut Multi-class twitter data categorization and geocoding with a novel computing framework 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM. Social media New York Traffic operation Short-term planning Machine learning Traffic management policy Chowdhury, Mashrur verfasserin aut Ngo, Linh B. verfasserin aut Apon, Amy verfasserin aut Enthalten in Cities Amsterdam [u.a.] : Elsevier Science, 1983 96 Online-Ressource (DE-627)320412881 (DE-600)2001540-9 (DE-576)098330306 0264-2751 nnns volume:96 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 74.12 Stadtgeographie Siedlungsgeographie 74.72 Stadtplanung kommunale Planung AR 96 |
allfieldsSound |
10.1016/j.cities.2019.102410 doi (DE-627)ELV003209954 (ELSEVIER)S0264-2751(18)31431-8 DE-627 ger DE-627 rda eng 690 DE-600 74.12 bkl 74.72 bkl Khan, Sakib Mahmud verfasserin aut Multi-class twitter data categorization and geocoding with a novel computing framework 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM. Social media New York Traffic operation Short-term planning Machine learning Traffic management policy Chowdhury, Mashrur verfasserin aut Ngo, Linh B. verfasserin aut Apon, Amy verfasserin aut Enthalten in Cities Amsterdam [u.a.] : Elsevier Science, 1983 96 Online-Ressource (DE-627)320412881 (DE-600)2001540-9 (DE-576)098330306 0264-2751 nnns volume:96 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 74.12 Stadtgeographie Siedlungsgeographie 74.72 Stadtplanung kommunale Planung AR 96 |
language |
English |
source |
Enthalten in Cities 96 volume:96 |
sourceStr |
Enthalten in Cities 96 volume:96 |
format_phy_str_mv |
Article |
bklname |
Stadtgeographie Siedlungsgeographie Stadtplanung kommunale Planung |
institution |
findex.gbv.de |
topic_facet |
Social media New York Traffic operation Short-term planning Machine learning Traffic management policy |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Cities |
authorswithroles_txt_mv |
Khan, Sakib Mahmud @@aut@@ Chowdhury, Mashrur @@aut@@ Ngo, Linh B. @@aut@@ Apon, Amy @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320412881 |
dewey-sort |
3690 |
id |
ELV003209954 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003209954</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524164410.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cities.2019.102410</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003209954</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0264-2751(18)31431-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khan, Sakib Mahmud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-class twitter data categorization and geocoding with a novel computing framework</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">New York</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic operation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Short-term planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic management policy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chowdhury, Mashrur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ngo, Linh B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Apon, Amy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cities</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">96</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412881</subfield><subfield code="w">(DE-600)2001540-9</subfield><subfield code="w">(DE-576)098330306</subfield><subfield code="x">0264-2751</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:96</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.12</subfield><subfield code="j">Stadtgeographie</subfield><subfield code="j">Siedlungsgeographie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.72</subfield><subfield code="j">Stadtplanung</subfield><subfield code="j">kommunale Planung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">96</subfield></datafield></record></collection>
|
author |
Khan, Sakib Mahmud |
spellingShingle |
Khan, Sakib Mahmud ddc 690 bkl 74.12 bkl 74.72 misc Social media misc New York misc Traffic operation misc Short-term planning misc Machine learning misc Traffic management policy Multi-class twitter data categorization and geocoding with a novel computing framework |
authorStr |
Khan, Sakib Mahmud |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320412881 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0264-2751 |
topic_title |
690 DE-600 74.12 bkl 74.72 bkl Multi-class twitter data categorization and geocoding with a novel computing framework Social media New York Traffic operation Short-term planning Machine learning Traffic management policy |
topic |
ddc 690 bkl 74.12 bkl 74.72 misc Social media misc New York misc Traffic operation misc Short-term planning misc Machine learning misc Traffic management policy |
topic_unstemmed |
ddc 690 bkl 74.12 bkl 74.72 misc Social media misc New York misc Traffic operation misc Short-term planning misc Machine learning misc Traffic management policy |
topic_browse |
ddc 690 bkl 74.12 bkl 74.72 misc Social media misc New York misc Traffic operation misc Short-term planning misc Machine learning misc Traffic management policy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cities |
hierarchy_parent_id |
320412881 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Cities |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320412881 (DE-600)2001540-9 (DE-576)098330306 |
title |
Multi-class twitter data categorization and geocoding with a novel computing framework |
ctrlnum |
(DE-627)ELV003209954 (ELSEVIER)S0264-2751(18)31431-8 |
title_full |
Multi-class twitter data categorization and geocoding with a novel computing framework |
author_sort |
Khan, Sakib Mahmud |
journal |
Cities |
journalStr |
Cities |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Khan, Sakib Mahmud Chowdhury, Mashrur Ngo, Linh B. Apon, Amy |
container_volume |
96 |
class |
690 DE-600 74.12 bkl 74.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Khan, Sakib Mahmud |
doi_str_mv |
10.1016/j.cities.2019.102410 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
multi-class twitter data categorization and geocoding with a novel computing framework |
title_auth |
Multi-class twitter data categorization and geocoding with a novel computing framework |
abstract |
This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM. |
abstractGer |
This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM. |
abstract_unstemmed |
This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Multi-class twitter data categorization and geocoding with a novel computing framework |
remote_bool |
true |
author2 |
Chowdhury, Mashrur Ngo, Linh B. Apon, Amy |
author2Str |
Chowdhury, Mashrur Ngo, Linh B. Apon, Amy |
ppnlink |
320412881 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cities.2019.102410 |
up_date |
2024-07-06T18:51:44.163Z |
_version_ |
1803856803700670464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003209954</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524164410.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cities.2019.102410</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003209954</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0264-2751(18)31431-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khan, Sakib Mahmud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-class twitter data categorization and geocoding with a novel computing framework</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study details the progress in transportation data analysis with a novel computing framework in keeping with the continuous evolution of the computing technology. The computing framework combines the Labeled Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting computing strategy on publicly available Twitter data in determining transportation-related events to provide reliable information to travelers. The analytical approach includes analyzing tweets using text classification and geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to extract relevant transportation-related information for one week. The SVM classifier achieves >85% accuracy in identifying transportation-related tweets from structured data. To further categorize the transportation-related tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone L-LDA and SVM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">New York</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic operation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Short-term planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic management policy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chowdhury, Mashrur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ngo, Linh B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Apon, Amy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cities</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">96</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412881</subfield><subfield code="w">(DE-600)2001540-9</subfield><subfield code="w">(DE-576)098330306</subfield><subfield code="x">0264-2751</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:96</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.12</subfield><subfield code="j">Stadtgeographie</subfield><subfield code="j">Siedlungsgeographie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.72</subfield><subfield code="j">Stadtplanung</subfield><subfield code="j">kommunale Planung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">96</subfield></datafield></record></collection>
|
score |
7.399935 |