Room temperature photoluminescence in plasma treated rutile TiO
Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological...
Ausführliche Beschreibung
Autor*in: |
Tariq, Fawad [verfasserIn] Rehman, Najeeb ur [verfasserIn] Akhtar, Naureen [verfasserIn] George, Richard E. [verfasserIn] Khan, Yaqoob [verfasserIn] Rahman, Shams ur [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Vacuum - Amsterdam [u.a.] : Elsevier Science, 1951, 171 |
---|---|
Übergeordnetes Werk: |
volume:171 |
DOI / URN: |
10.1016/j.vacuum.2019.108999 |
---|
Katalog-ID: |
ELV00322158X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00322158X | ||
003 | DE-627 | ||
005 | 20230524151111.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.vacuum.2019.108999 |2 doi | |
035 | |a (DE-627)ELV00322158X | ||
035 | |a (ELSEVIER)S0042-207X(19)30684-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 58.19 |2 bkl | ||
084 | |a 33.09 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Tariq, Fawad |e verfasserin |4 aut | |
245 | 1 | 0 | |a Room temperature photoluminescence in plasma treated rutile TiO |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological realization. In this article, we report room temperature photoluminescence from plasma treated rutile TiO2 (110) single crystals. The effect of capacitively coupled radio frequency plasma etching on the luminescence properties of TiO2 (110) single crystals is discussed in detail. The plasma treatment modifies the surface of TiO2 (110) single crystals and introduces oxygen vacancies in the near surface region. The discharge parameters such as treatment time and pressure are correlated with the luminescence properties of treated TiO2 (110) single crystals. The Langmuir probe method is employed to determine the plasma electron density ‘ n e ‘, ion density ‘ n i ‘, electron temperature ‘ T e ’ and electron energy probability function (EEPF) of the plasma used to etch the TiO2 single crystals. Photoluminescence (PL) spectra reveal blue and green-light emission with an intensity dependent on the plasma treatment process. We hope that inducing defects through plasma treatment will be extended to other metal oxides surfaces, which may find utility in various applications. | ||
650 | 4 | |a Photoluminescence | |
650 | 4 | |a In-gap states | |
650 | 4 | |a Titanium dioxide | |
650 | 4 | |a Plasma etching | |
650 | 4 | |a Oxygen vacancies | |
650 | 4 | |a Defect centers | |
700 | 1 | |a Rehman, Najeeb ur |e verfasserin |4 aut | |
700 | 1 | |a Akhtar, Naureen |e verfasserin |4 aut | |
700 | 1 | |a George, Richard E. |e verfasserin |4 aut | |
700 | 1 | |a Khan, Yaqoob |e verfasserin |4 aut | |
700 | 1 | |a Rahman, Shams ur |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Vacuum |d Amsterdam [u.a.] : Elsevier Science, 1951 |g 171 |h Online-Ressource |w (DE-627)271176393 |w (DE-600)1479044-0 |w (DE-576)114088187 |x 0042-207X |7 nnns |
773 | 1 | 8 | |g volume:171 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.19 |j Verfahrenstechnik: Sonstiges |
936 | b | k | |a 33.09 |j Physik unter besonderen Bedingungen |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |
951 | |a AR | ||
952 | |d 171 |
author_variant |
f t ft n u r nu nur n a na r e g re reg y k yk s u r su sur |
---|---|
matchkey_str |
article:0042207X:2019----::omeprtrpoouiecnenlsar |
hierarchy_sort_str |
2019 |
bklnumber |
58.19 33.09 52.78 |
publishDate |
2019 |
allfields |
10.1016/j.vacuum.2019.108999 doi (DE-627)ELV00322158X (ELSEVIER)S0042-207X(19)30684-0 DE-627 ger DE-627 rda eng 530 DE-600 58.19 bkl 33.09 bkl 52.78 bkl Tariq, Fawad verfasserin aut Room temperature photoluminescence in plasma treated rutile TiO 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological realization. In this article, we report room temperature photoluminescence from plasma treated rutile TiO2 (110) single crystals. The effect of capacitively coupled radio frequency plasma etching on the luminescence properties of TiO2 (110) single crystals is discussed in detail. The plasma treatment modifies the surface of TiO2 (110) single crystals and introduces oxygen vacancies in the near surface region. The discharge parameters such as treatment time and pressure are correlated with the luminescence properties of treated TiO2 (110) single crystals. The Langmuir probe method is employed to determine the plasma electron density ‘ n e ‘, ion density ‘ n i ‘, electron temperature ‘ T e ’ and electron energy probability function (EEPF) of the plasma used to etch the TiO2 single crystals. Photoluminescence (PL) spectra reveal blue and green-light emission with an intensity dependent on the plasma treatment process. We hope that inducing defects through plasma treatment will be extended to other metal oxides surfaces, which may find utility in various applications. Photoluminescence In-gap states Titanium dioxide Plasma etching Oxygen vacancies Defect centers Rehman, Najeeb ur verfasserin aut Akhtar, Naureen verfasserin aut George, Richard E. verfasserin aut Khan, Yaqoob verfasserin aut Rahman, Shams ur verfasserin aut Enthalten in Vacuum Amsterdam [u.a.] : Elsevier Science, 1951 171 Online-Ressource (DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 0042-207X nnns volume:171 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.19 Verfahrenstechnik: Sonstiges 33.09 Physik unter besonderen Bedingungen 52.78 Oberflächentechnik Wärmebehandlung AR 171 |
spelling |
10.1016/j.vacuum.2019.108999 doi (DE-627)ELV00322158X (ELSEVIER)S0042-207X(19)30684-0 DE-627 ger DE-627 rda eng 530 DE-600 58.19 bkl 33.09 bkl 52.78 bkl Tariq, Fawad verfasserin aut Room temperature photoluminescence in plasma treated rutile TiO 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological realization. In this article, we report room temperature photoluminescence from plasma treated rutile TiO2 (110) single crystals. The effect of capacitively coupled radio frequency plasma etching on the luminescence properties of TiO2 (110) single crystals is discussed in detail. The plasma treatment modifies the surface of TiO2 (110) single crystals and introduces oxygen vacancies in the near surface region. The discharge parameters such as treatment time and pressure are correlated with the luminescence properties of treated TiO2 (110) single crystals. The Langmuir probe method is employed to determine the plasma electron density ‘ n e ‘, ion density ‘ n i ‘, electron temperature ‘ T e ’ and electron energy probability function (EEPF) of the plasma used to etch the TiO2 single crystals. Photoluminescence (PL) spectra reveal blue and green-light emission with an intensity dependent on the plasma treatment process. We hope that inducing defects through plasma treatment will be extended to other metal oxides surfaces, which may find utility in various applications. Photoluminescence In-gap states Titanium dioxide Plasma etching Oxygen vacancies Defect centers Rehman, Najeeb ur verfasserin aut Akhtar, Naureen verfasserin aut George, Richard E. verfasserin aut Khan, Yaqoob verfasserin aut Rahman, Shams ur verfasserin aut Enthalten in Vacuum Amsterdam [u.a.] : Elsevier Science, 1951 171 Online-Ressource (DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 0042-207X nnns volume:171 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.19 Verfahrenstechnik: Sonstiges 33.09 Physik unter besonderen Bedingungen 52.78 Oberflächentechnik Wärmebehandlung AR 171 |
allfields_unstemmed |
10.1016/j.vacuum.2019.108999 doi (DE-627)ELV00322158X (ELSEVIER)S0042-207X(19)30684-0 DE-627 ger DE-627 rda eng 530 DE-600 58.19 bkl 33.09 bkl 52.78 bkl Tariq, Fawad verfasserin aut Room temperature photoluminescence in plasma treated rutile TiO 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological realization. In this article, we report room temperature photoluminescence from plasma treated rutile TiO2 (110) single crystals. The effect of capacitively coupled radio frequency plasma etching on the luminescence properties of TiO2 (110) single crystals is discussed in detail. The plasma treatment modifies the surface of TiO2 (110) single crystals and introduces oxygen vacancies in the near surface region. The discharge parameters such as treatment time and pressure are correlated with the luminescence properties of treated TiO2 (110) single crystals. The Langmuir probe method is employed to determine the plasma electron density ‘ n e ‘, ion density ‘ n i ‘, electron temperature ‘ T e ’ and electron energy probability function (EEPF) of the plasma used to etch the TiO2 single crystals. Photoluminescence (PL) spectra reveal blue and green-light emission with an intensity dependent on the plasma treatment process. We hope that inducing defects through plasma treatment will be extended to other metal oxides surfaces, which may find utility in various applications. Photoluminescence In-gap states Titanium dioxide Plasma etching Oxygen vacancies Defect centers Rehman, Najeeb ur verfasserin aut Akhtar, Naureen verfasserin aut George, Richard E. verfasserin aut Khan, Yaqoob verfasserin aut Rahman, Shams ur verfasserin aut Enthalten in Vacuum Amsterdam [u.a.] : Elsevier Science, 1951 171 Online-Ressource (DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 0042-207X nnns volume:171 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.19 Verfahrenstechnik: Sonstiges 33.09 Physik unter besonderen Bedingungen 52.78 Oberflächentechnik Wärmebehandlung AR 171 |
allfieldsGer |
10.1016/j.vacuum.2019.108999 doi (DE-627)ELV00322158X (ELSEVIER)S0042-207X(19)30684-0 DE-627 ger DE-627 rda eng 530 DE-600 58.19 bkl 33.09 bkl 52.78 bkl Tariq, Fawad verfasserin aut Room temperature photoluminescence in plasma treated rutile TiO 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological realization. In this article, we report room temperature photoluminescence from plasma treated rutile TiO2 (110) single crystals. The effect of capacitively coupled radio frequency plasma etching on the luminescence properties of TiO2 (110) single crystals is discussed in detail. The plasma treatment modifies the surface of TiO2 (110) single crystals and introduces oxygen vacancies in the near surface region. The discharge parameters such as treatment time and pressure are correlated with the luminescence properties of treated TiO2 (110) single crystals. The Langmuir probe method is employed to determine the plasma electron density ‘ n e ‘, ion density ‘ n i ‘, electron temperature ‘ T e ’ and electron energy probability function (EEPF) of the plasma used to etch the TiO2 single crystals. Photoluminescence (PL) spectra reveal blue and green-light emission with an intensity dependent on the plasma treatment process. We hope that inducing defects through plasma treatment will be extended to other metal oxides surfaces, which may find utility in various applications. Photoluminescence In-gap states Titanium dioxide Plasma etching Oxygen vacancies Defect centers Rehman, Najeeb ur verfasserin aut Akhtar, Naureen verfasserin aut George, Richard E. verfasserin aut Khan, Yaqoob verfasserin aut Rahman, Shams ur verfasserin aut Enthalten in Vacuum Amsterdam [u.a.] : Elsevier Science, 1951 171 Online-Ressource (DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 0042-207X nnns volume:171 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.19 Verfahrenstechnik: Sonstiges 33.09 Physik unter besonderen Bedingungen 52.78 Oberflächentechnik Wärmebehandlung AR 171 |
allfieldsSound |
10.1016/j.vacuum.2019.108999 doi (DE-627)ELV00322158X (ELSEVIER)S0042-207X(19)30684-0 DE-627 ger DE-627 rda eng 530 DE-600 58.19 bkl 33.09 bkl 52.78 bkl Tariq, Fawad verfasserin aut Room temperature photoluminescence in plasma treated rutile TiO 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological realization. In this article, we report room temperature photoluminescence from plasma treated rutile TiO2 (110) single crystals. The effect of capacitively coupled radio frequency plasma etching on the luminescence properties of TiO2 (110) single crystals is discussed in detail. The plasma treatment modifies the surface of TiO2 (110) single crystals and introduces oxygen vacancies in the near surface region. The discharge parameters such as treatment time and pressure are correlated with the luminescence properties of treated TiO2 (110) single crystals. The Langmuir probe method is employed to determine the plasma electron density ‘ n e ‘, ion density ‘ n i ‘, electron temperature ‘ T e ’ and electron energy probability function (EEPF) of the plasma used to etch the TiO2 single crystals. Photoluminescence (PL) spectra reveal blue and green-light emission with an intensity dependent on the plasma treatment process. We hope that inducing defects through plasma treatment will be extended to other metal oxides surfaces, which may find utility in various applications. Photoluminescence In-gap states Titanium dioxide Plasma etching Oxygen vacancies Defect centers Rehman, Najeeb ur verfasserin aut Akhtar, Naureen verfasserin aut George, Richard E. verfasserin aut Khan, Yaqoob verfasserin aut Rahman, Shams ur verfasserin aut Enthalten in Vacuum Amsterdam [u.a.] : Elsevier Science, 1951 171 Online-Ressource (DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 0042-207X nnns volume:171 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.19 Verfahrenstechnik: Sonstiges 33.09 Physik unter besonderen Bedingungen 52.78 Oberflächentechnik Wärmebehandlung AR 171 |
language |
English |
source |
Enthalten in Vacuum 171 volume:171 |
sourceStr |
Enthalten in Vacuum 171 volume:171 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Sonstiges Physik unter besonderen Bedingungen Oberflächentechnik Wärmebehandlung |
institution |
findex.gbv.de |
topic_facet |
Photoluminescence In-gap states Titanium dioxide Plasma etching Oxygen vacancies Defect centers |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Vacuum |
authorswithroles_txt_mv |
Tariq, Fawad @@aut@@ Rehman, Najeeb ur @@aut@@ Akhtar, Naureen @@aut@@ George, Richard E. @@aut@@ Khan, Yaqoob @@aut@@ Rahman, Shams ur @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
271176393 |
dewey-sort |
3530 |
id |
ELV00322158X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00322158X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151111.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.vacuum.2019.108999</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00322158X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0042-207X(19)30684-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.19</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tariq, Fawad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Room temperature photoluminescence in plasma treated rutile TiO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological realization. In this article, we report room temperature photoluminescence from plasma treated rutile TiO2 (110) single crystals. The effect of capacitively coupled radio frequency plasma etching on the luminescence properties of TiO2 (110) single crystals is discussed in detail. The plasma treatment modifies the surface of TiO2 (110) single crystals and introduces oxygen vacancies in the near surface region. The discharge parameters such as treatment time and pressure are correlated with the luminescence properties of treated TiO2 (110) single crystals. The Langmuir probe method is employed to determine the plasma electron density ‘ n e ‘, ion density ‘ n i ‘, electron temperature ‘ T e ’ and electron energy probability function (EEPF) of the plasma used to etch the TiO2 single crystals. Photoluminescence (PL) spectra reveal blue and green-light emission with an intensity dependent on the plasma treatment process. We hope that inducing defects through plasma treatment will be extended to other metal oxides surfaces, which may find utility in various applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoluminescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">In-gap states</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Titanium dioxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma etching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen vacancies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Defect centers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rehman, Najeeb ur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akhtar, Naureen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">George, Richard E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Yaqoob</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rahman, Shams ur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Vacuum</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1951</subfield><subfield code="g">171</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271176393</subfield><subfield code="w">(DE-600)1479044-0</subfield><subfield code="w">(DE-576)114088187</subfield><subfield code="x">0042-207X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.19</subfield><subfield code="j">Verfahrenstechnik: Sonstiges</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">171</subfield></datafield></record></collection>
|
author |
Tariq, Fawad |
spellingShingle |
Tariq, Fawad ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 misc Photoluminescence misc In-gap states misc Titanium dioxide misc Plasma etching misc Oxygen vacancies misc Defect centers Room temperature photoluminescence in plasma treated rutile TiO |
authorStr |
Tariq, Fawad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271176393 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0042-207X |
topic_title |
530 DE-600 58.19 bkl 33.09 bkl 52.78 bkl Room temperature photoluminescence in plasma treated rutile TiO Photoluminescence In-gap states Titanium dioxide Plasma etching Oxygen vacancies Defect centers |
topic |
ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 misc Photoluminescence misc In-gap states misc Titanium dioxide misc Plasma etching misc Oxygen vacancies misc Defect centers |
topic_unstemmed |
ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 misc Photoluminescence misc In-gap states misc Titanium dioxide misc Plasma etching misc Oxygen vacancies misc Defect centers |
topic_browse |
ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 misc Photoluminescence misc In-gap states misc Titanium dioxide misc Plasma etching misc Oxygen vacancies misc Defect centers |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Vacuum |
hierarchy_parent_id |
271176393 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Vacuum |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271176393 (DE-600)1479044-0 (DE-576)114088187 |
title |
Room temperature photoluminescence in plasma treated rutile TiO |
ctrlnum |
(DE-627)ELV00322158X (ELSEVIER)S0042-207X(19)30684-0 |
title_full |
Room temperature photoluminescence in plasma treated rutile TiO |
author_sort |
Tariq, Fawad |
journal |
Vacuum |
journalStr |
Vacuum |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Tariq, Fawad Rehman, Najeeb ur Akhtar, Naureen George, Richard E. Khan, Yaqoob Rahman, Shams ur |
container_volume |
171 |
class |
530 DE-600 58.19 bkl 33.09 bkl 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tariq, Fawad |
doi_str_mv |
10.1016/j.vacuum.2019.108999 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
room temperature photoluminescence in plasma treated rutile tio |
title_auth |
Room temperature photoluminescence in plasma treated rutile TiO |
abstract |
Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological realization. In this article, we report room temperature photoluminescence from plasma treated rutile TiO2 (110) single crystals. The effect of capacitively coupled radio frequency plasma etching on the luminescence properties of TiO2 (110) single crystals is discussed in detail. The plasma treatment modifies the surface of TiO2 (110) single crystals and introduces oxygen vacancies in the near surface region. The discharge parameters such as treatment time and pressure are correlated with the luminescence properties of treated TiO2 (110) single crystals. The Langmuir probe method is employed to determine the plasma electron density ‘ n e ‘, ion density ‘ n i ‘, electron temperature ‘ T e ’ and electron energy probability function (EEPF) of the plasma used to etch the TiO2 single crystals. Photoluminescence (PL) spectra reveal blue and green-light emission with an intensity dependent on the plasma treatment process. We hope that inducing defects through plasma treatment will be extended to other metal oxides surfaces, which may find utility in various applications. |
abstractGer |
Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological realization. In this article, we report room temperature photoluminescence from plasma treated rutile TiO2 (110) single crystals. The effect of capacitively coupled radio frequency plasma etching on the luminescence properties of TiO2 (110) single crystals is discussed in detail. The plasma treatment modifies the surface of TiO2 (110) single crystals and introduces oxygen vacancies in the near surface region. The discharge parameters such as treatment time and pressure are correlated with the luminescence properties of treated TiO2 (110) single crystals. The Langmuir probe method is employed to determine the plasma electron density ‘ n e ‘, ion density ‘ n i ‘, electron temperature ‘ T e ’ and electron energy probability function (EEPF) of the plasma used to etch the TiO2 single crystals. Photoluminescence (PL) spectra reveal blue and green-light emission with an intensity dependent on the plasma treatment process. We hope that inducing defects through plasma treatment will be extended to other metal oxides surfaces, which may find utility in various applications. |
abstract_unstemmed |
Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological realization. In this article, we report room temperature photoluminescence from plasma treated rutile TiO2 (110) single crystals. The effect of capacitively coupled radio frequency plasma etching on the luminescence properties of TiO2 (110) single crystals is discussed in detail. The plasma treatment modifies the surface of TiO2 (110) single crystals and introduces oxygen vacancies in the near surface region. The discharge parameters such as treatment time and pressure are correlated with the luminescence properties of treated TiO2 (110) single crystals. The Langmuir probe method is employed to determine the plasma electron density ‘ n e ‘, ion density ‘ n i ‘, electron temperature ‘ T e ’ and electron energy probability function (EEPF) of the plasma used to etch the TiO2 single crystals. Photoluminescence (PL) spectra reveal blue and green-light emission with an intensity dependent on the plasma treatment process. We hope that inducing defects through plasma treatment will be extended to other metal oxides surfaces, which may find utility in various applications. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Room temperature photoluminescence in plasma treated rutile TiO |
remote_bool |
true |
author2 |
Rehman, Najeeb ur Akhtar, Naureen George, Richard E. Khan, Yaqoob Rahman, Shams ur |
author2Str |
Rehman, Najeeb ur Akhtar, Naureen George, Richard E. Khan, Yaqoob Rahman, Shams ur |
ppnlink |
271176393 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.vacuum.2019.108999 |
up_date |
2024-07-06T18:54:04.203Z |
_version_ |
1803856950544302080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00322158X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151111.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.vacuum.2019.108999</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00322158X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0042-207X(19)30684-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.19</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tariq, Fawad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Room temperature photoluminescence in plasma treated rutile TiO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Defects play a key role in tailoring the functional properties of metal oxides for next generation technologies. A comprehensive understanding and control of defects is therefore of vital importance in order to determine defect engineering strategies in materials and to allow for their technological realization. In this article, we report room temperature photoluminescence from plasma treated rutile TiO2 (110) single crystals. The effect of capacitively coupled radio frequency plasma etching on the luminescence properties of TiO2 (110) single crystals is discussed in detail. The plasma treatment modifies the surface of TiO2 (110) single crystals and introduces oxygen vacancies in the near surface region. The discharge parameters such as treatment time and pressure are correlated with the luminescence properties of treated TiO2 (110) single crystals. The Langmuir probe method is employed to determine the plasma electron density ‘ n e ‘, ion density ‘ n i ‘, electron temperature ‘ T e ’ and electron energy probability function (EEPF) of the plasma used to etch the TiO2 single crystals. Photoluminescence (PL) spectra reveal blue and green-light emission with an intensity dependent on the plasma treatment process. We hope that inducing defects through plasma treatment will be extended to other metal oxides surfaces, which may find utility in various applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoluminescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">In-gap states</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Titanium dioxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma etching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen vacancies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Defect centers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rehman, Najeeb ur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akhtar, Naureen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">George, Richard E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Yaqoob</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rahman, Shams ur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Vacuum</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1951</subfield><subfield code="g">171</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)271176393</subfield><subfield code="w">(DE-600)1479044-0</subfield><subfield code="w">(DE-576)114088187</subfield><subfield code="x">0042-207X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.19</subfield><subfield code="j">Verfahrenstechnik: Sonstiges</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">171</subfield></datafield></record></collection>
|
score |
7.400646 |