Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling
Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insigh...
Ausführliche Beschreibung
Autor*in: |
Sterpi, D. [verfasserIn] Tomaselli, G. [verfasserIn] Angelotti, A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Renewable energy - Amsterdam [u.a.] : Elsevier Science, 1991, 147, Seite 2748-2760 |
---|---|
Übergeordnetes Werk: |
volume:147 ; pages:2748-2760 |
DOI / URN: |
10.1016/j.renene.2018.11.102 |
---|
Katalog-ID: |
ELV003243982 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003243982 | ||
003 | DE-627 | ||
005 | 20230524155139.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.renene.2018.11.102 |2 doi | |
035 | |a (DE-627)ELV003243982 | ||
035 | |a (ELSEVIER)S0960-1481(18)31421-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Sterpi, D. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insights, such as the layout of the exchanger pipe, the ratio between exposed and fully immersed parts of the wall, and the variable thermal condition at the excavation side. In this paper, these aspects are investigated first with reference to a full scale monitored diaphragm wall. From the field observations a finite element model is set up, validated by sensitivity analyses and calibrated on the monitoring data. The model is then used to attempt an optimization of the exchanger pipe layout. For given structure, ground conditions, thermal inputs and properties, the energy performance can be improved by limiting the thermal interference between pipe branches circulating fluid at different temperatures, and by taking advantage of the fully immersed part of the wall, on both faces in direct contact with the soil. A suggestion is given for enhanced pipe layouts that meet these requirements and lead to up to a 15.8% increase of exchanged heat rate for the studied case. | ||
650 | 4 | |a Ground source heat pump | |
650 | 4 | |a Thermo-active diaphragm wall | |
650 | 4 | |a Energy geostructure | |
650 | 4 | |a Ground heat exchanger | |
650 | 4 | |a Monitoring | |
650 | 4 | |a Finite element model | |
700 | 1 | |a Tomaselli, G. |e verfasserin |4 aut | |
700 | 1 | |a Angelotti, A. |e verfasserin |0 (orcid)0000-0002-9039-2102 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Renewable energy |d Amsterdam [u.a.] : Elsevier Science, 1991 |g 147, Seite 2748-2760 |h Online-Ressource |w (DE-627)320412091 |w (DE-600)2001449-1 |w (DE-576)252613937 |x 1879-0682 |7 nnns |
773 | 1 | 8 | |g volume:147 |g pages:2748-2760 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |
951 | |a AR | ||
952 | |d 147 |h 2748-2760 |
author_variant |
d s ds g t gt a a aa |
---|---|
matchkey_str |
article:18790682:2018----::nryefracogonhaecagrebdeidahamalfedbevtosno |
hierarchy_sort_str |
2018 |
bklnumber |
52.56 |
publishDate |
2018 |
allfields |
10.1016/j.renene.2018.11.102 doi (DE-627)ELV003243982 (ELSEVIER)S0960-1481(18)31421-6 DE-627 ger DE-627 rda eng 530 620 DE-600 52.56 bkl Sterpi, D. verfasserin aut Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insights, such as the layout of the exchanger pipe, the ratio between exposed and fully immersed parts of the wall, and the variable thermal condition at the excavation side. In this paper, these aspects are investigated first with reference to a full scale monitored diaphragm wall. From the field observations a finite element model is set up, validated by sensitivity analyses and calibrated on the monitoring data. The model is then used to attempt an optimization of the exchanger pipe layout. For given structure, ground conditions, thermal inputs and properties, the energy performance can be improved by limiting the thermal interference between pipe branches circulating fluid at different temperatures, and by taking advantage of the fully immersed part of the wall, on both faces in direct contact with the soil. A suggestion is given for enhanced pipe layouts that meet these requirements and lead to up to a 15.8% increase of exchanged heat rate for the studied case. Ground source heat pump Thermo-active diaphragm wall Energy geostructure Ground heat exchanger Monitoring Finite element model Tomaselli, G. verfasserin aut Angelotti, A. verfasserin (orcid)0000-0002-9039-2102 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 147, Seite 2748-2760 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:147 pages:2748-2760 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 147 2748-2760 |
spelling |
10.1016/j.renene.2018.11.102 doi (DE-627)ELV003243982 (ELSEVIER)S0960-1481(18)31421-6 DE-627 ger DE-627 rda eng 530 620 DE-600 52.56 bkl Sterpi, D. verfasserin aut Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insights, such as the layout of the exchanger pipe, the ratio between exposed and fully immersed parts of the wall, and the variable thermal condition at the excavation side. In this paper, these aspects are investigated first with reference to a full scale monitored diaphragm wall. From the field observations a finite element model is set up, validated by sensitivity analyses and calibrated on the monitoring data. The model is then used to attempt an optimization of the exchanger pipe layout. For given structure, ground conditions, thermal inputs and properties, the energy performance can be improved by limiting the thermal interference between pipe branches circulating fluid at different temperatures, and by taking advantage of the fully immersed part of the wall, on both faces in direct contact with the soil. A suggestion is given for enhanced pipe layouts that meet these requirements and lead to up to a 15.8% increase of exchanged heat rate for the studied case. Ground source heat pump Thermo-active diaphragm wall Energy geostructure Ground heat exchanger Monitoring Finite element model Tomaselli, G. verfasserin aut Angelotti, A. verfasserin (orcid)0000-0002-9039-2102 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 147, Seite 2748-2760 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:147 pages:2748-2760 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 147 2748-2760 |
allfields_unstemmed |
10.1016/j.renene.2018.11.102 doi (DE-627)ELV003243982 (ELSEVIER)S0960-1481(18)31421-6 DE-627 ger DE-627 rda eng 530 620 DE-600 52.56 bkl Sterpi, D. verfasserin aut Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insights, such as the layout of the exchanger pipe, the ratio between exposed and fully immersed parts of the wall, and the variable thermal condition at the excavation side. In this paper, these aspects are investigated first with reference to a full scale monitored diaphragm wall. From the field observations a finite element model is set up, validated by sensitivity analyses and calibrated on the monitoring data. The model is then used to attempt an optimization of the exchanger pipe layout. For given structure, ground conditions, thermal inputs and properties, the energy performance can be improved by limiting the thermal interference between pipe branches circulating fluid at different temperatures, and by taking advantage of the fully immersed part of the wall, on both faces in direct contact with the soil. A suggestion is given for enhanced pipe layouts that meet these requirements and lead to up to a 15.8% increase of exchanged heat rate for the studied case. Ground source heat pump Thermo-active diaphragm wall Energy geostructure Ground heat exchanger Monitoring Finite element model Tomaselli, G. verfasserin aut Angelotti, A. verfasserin (orcid)0000-0002-9039-2102 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 147, Seite 2748-2760 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:147 pages:2748-2760 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 147 2748-2760 |
allfieldsGer |
10.1016/j.renene.2018.11.102 doi (DE-627)ELV003243982 (ELSEVIER)S0960-1481(18)31421-6 DE-627 ger DE-627 rda eng 530 620 DE-600 52.56 bkl Sterpi, D. verfasserin aut Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insights, such as the layout of the exchanger pipe, the ratio between exposed and fully immersed parts of the wall, and the variable thermal condition at the excavation side. In this paper, these aspects are investigated first with reference to a full scale monitored diaphragm wall. From the field observations a finite element model is set up, validated by sensitivity analyses and calibrated on the monitoring data. The model is then used to attempt an optimization of the exchanger pipe layout. For given structure, ground conditions, thermal inputs and properties, the energy performance can be improved by limiting the thermal interference between pipe branches circulating fluid at different temperatures, and by taking advantage of the fully immersed part of the wall, on both faces in direct contact with the soil. A suggestion is given for enhanced pipe layouts that meet these requirements and lead to up to a 15.8% increase of exchanged heat rate for the studied case. Ground source heat pump Thermo-active diaphragm wall Energy geostructure Ground heat exchanger Monitoring Finite element model Tomaselli, G. verfasserin aut Angelotti, A. verfasserin (orcid)0000-0002-9039-2102 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 147, Seite 2748-2760 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:147 pages:2748-2760 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 147 2748-2760 |
allfieldsSound |
10.1016/j.renene.2018.11.102 doi (DE-627)ELV003243982 (ELSEVIER)S0960-1481(18)31421-6 DE-627 ger DE-627 rda eng 530 620 DE-600 52.56 bkl Sterpi, D. verfasserin aut Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insights, such as the layout of the exchanger pipe, the ratio between exposed and fully immersed parts of the wall, and the variable thermal condition at the excavation side. In this paper, these aspects are investigated first with reference to a full scale monitored diaphragm wall. From the field observations a finite element model is set up, validated by sensitivity analyses and calibrated on the monitoring data. The model is then used to attempt an optimization of the exchanger pipe layout. For given structure, ground conditions, thermal inputs and properties, the energy performance can be improved by limiting the thermal interference between pipe branches circulating fluid at different temperatures, and by taking advantage of the fully immersed part of the wall, on both faces in direct contact with the soil. A suggestion is given for enhanced pipe layouts that meet these requirements and lead to up to a 15.8% increase of exchanged heat rate for the studied case. Ground source heat pump Thermo-active diaphragm wall Energy geostructure Ground heat exchanger Monitoring Finite element model Tomaselli, G. verfasserin aut Angelotti, A. verfasserin (orcid)0000-0002-9039-2102 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 147, Seite 2748-2760 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:147 pages:2748-2760 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 147 2748-2760 |
language |
English |
source |
Enthalten in Renewable energy 147, Seite 2748-2760 volume:147 pages:2748-2760 |
sourceStr |
Enthalten in Renewable energy 147, Seite 2748-2760 volume:147 pages:2748-2760 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Ground source heat pump Thermo-active diaphragm wall Energy geostructure Ground heat exchanger Monitoring Finite element model |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Renewable energy |
authorswithroles_txt_mv |
Sterpi, D. @@aut@@ Tomaselli, G. @@aut@@ Angelotti, A. @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320412091 |
dewey-sort |
3530 |
id |
ELV003243982 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003243982</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.renene.2018.11.102</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003243982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-1481(18)31421-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sterpi, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insights, such as the layout of the exchanger pipe, the ratio between exposed and fully immersed parts of the wall, and the variable thermal condition at the excavation side. In this paper, these aspects are investigated first with reference to a full scale monitored diaphragm wall. From the field observations a finite element model is set up, validated by sensitivity analyses and calibrated on the monitoring data. The model is then used to attempt an optimization of the exchanger pipe layout. For given structure, ground conditions, thermal inputs and properties, the energy performance can be improved by limiting the thermal interference between pipe branches circulating fluid at different temperatures, and by taking advantage of the fully immersed part of the wall, on both faces in direct contact with the soil. A suggestion is given for enhanced pipe layouts that meet these requirements and lead to up to a 15.8% increase of exchanged heat rate for the studied case.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground source heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermo-active diaphragm wall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy geostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomaselli, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angelotti, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9039-2102</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Renewable energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">147, Seite 2748-2760</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412091</subfield><subfield code="w">(DE-600)2001449-1</subfield><subfield code="w">(DE-576)252613937</subfield><subfield code="x">1879-0682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">pages:2748-2760</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="h">2748-2760</subfield></datafield></record></collection>
|
author |
Sterpi, D. |
spellingShingle |
Sterpi, D. ddc 530 bkl 52.56 misc Ground source heat pump misc Thermo-active diaphragm wall misc Energy geostructure misc Ground heat exchanger misc Monitoring misc Finite element model Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling |
authorStr |
Sterpi, D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320412091 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0682 |
topic_title |
530 620 DE-600 52.56 bkl Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling Ground source heat pump Thermo-active diaphragm wall Energy geostructure Ground heat exchanger Monitoring Finite element model |
topic |
ddc 530 bkl 52.56 misc Ground source heat pump misc Thermo-active diaphragm wall misc Energy geostructure misc Ground heat exchanger misc Monitoring misc Finite element model |
topic_unstemmed |
ddc 530 bkl 52.56 misc Ground source heat pump misc Thermo-active diaphragm wall misc Energy geostructure misc Ground heat exchanger misc Monitoring misc Finite element model |
topic_browse |
ddc 530 bkl 52.56 misc Ground source heat pump misc Thermo-active diaphragm wall misc Energy geostructure misc Ground heat exchanger misc Monitoring misc Finite element model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Renewable energy |
hierarchy_parent_id |
320412091 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Renewable energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 |
title |
Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling |
ctrlnum |
(DE-627)ELV003243982 (ELSEVIER)S0960-1481(18)31421-6 |
title_full |
Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling |
author_sort |
Sterpi, D. |
journal |
Renewable energy |
journalStr |
Renewable energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
2748 |
author_browse |
Sterpi, D. Tomaselli, G. Angelotti, A. |
container_volume |
147 |
class |
530 620 DE-600 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sterpi, D. |
doi_str_mv |
10.1016/j.renene.2018.11.102 |
normlink |
(ORCID)0000-0002-9039-2102 |
normlink_prefix_str_mv |
(orcid)0000-0002-9039-2102 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
energy performance of ground heat exchangers embedded in diaphragm walls: field observations and optimization by numerical modelling |
title_auth |
Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling |
abstract |
Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insights, such as the layout of the exchanger pipe, the ratio between exposed and fully immersed parts of the wall, and the variable thermal condition at the excavation side. In this paper, these aspects are investigated first with reference to a full scale monitored diaphragm wall. From the field observations a finite element model is set up, validated by sensitivity analyses and calibrated on the monitoring data. The model is then used to attempt an optimization of the exchanger pipe layout. For given structure, ground conditions, thermal inputs and properties, the energy performance can be improved by limiting the thermal interference between pipe branches circulating fluid at different temperatures, and by taking advantage of the fully immersed part of the wall, on both faces in direct contact with the soil. A suggestion is given for enhanced pipe layouts that meet these requirements and lead to up to a 15.8% increase of exchanged heat rate for the studied case. |
abstractGer |
Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insights, such as the layout of the exchanger pipe, the ratio between exposed and fully immersed parts of the wall, and the variable thermal condition at the excavation side. In this paper, these aspects are investigated first with reference to a full scale monitored diaphragm wall. From the field observations a finite element model is set up, validated by sensitivity analyses and calibrated on the monitoring data. The model is then used to attempt an optimization of the exchanger pipe layout. For given structure, ground conditions, thermal inputs and properties, the energy performance can be improved by limiting the thermal interference between pipe branches circulating fluid at different temperatures, and by taking advantage of the fully immersed part of the wall, on both faces in direct contact with the soil. A suggestion is given for enhanced pipe layouts that meet these requirements and lead to up to a 15.8% increase of exchanged heat rate for the studied case. |
abstract_unstemmed |
Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insights, such as the layout of the exchanger pipe, the ratio between exposed and fully immersed parts of the wall, and the variable thermal condition at the excavation side. In this paper, these aspects are investigated first with reference to a full scale monitored diaphragm wall. From the field observations a finite element model is set up, validated by sensitivity analyses and calibrated on the monitoring data. The model is then used to attempt an optimization of the exchanger pipe layout. For given structure, ground conditions, thermal inputs and properties, the energy performance can be improved by limiting the thermal interference between pipe branches circulating fluid at different temperatures, and by taking advantage of the fully immersed part of the wall, on both faces in direct contact with the soil. A suggestion is given for enhanced pipe layouts that meet these requirements and lead to up to a 15.8% increase of exchanged heat rate for the studied case. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling |
remote_bool |
true |
author2 |
Tomaselli, G. Angelotti, A. |
author2Str |
Tomaselli, G. Angelotti, A. |
ppnlink |
320412091 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.renene.2018.11.102 |
up_date |
2024-07-06T18:58:40.027Z |
_version_ |
1803857239765680128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003243982</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.renene.2018.11.102</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003243982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-1481(18)31421-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sterpi, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ground immersed structures thermally activated by embedded heat exchangers represent a solution for building climatization, that combines efficiency, sustainability and cost saving. However, the performance of thermally activated diaphragm walls is influenced by key factors that still require insights, such as the layout of the exchanger pipe, the ratio between exposed and fully immersed parts of the wall, and the variable thermal condition at the excavation side. In this paper, these aspects are investigated first with reference to a full scale monitored diaphragm wall. From the field observations a finite element model is set up, validated by sensitivity analyses and calibrated on the monitoring data. The model is then used to attempt an optimization of the exchanger pipe layout. For given structure, ground conditions, thermal inputs and properties, the energy performance can be improved by limiting the thermal interference between pipe branches circulating fluid at different temperatures, and by taking advantage of the fully immersed part of the wall, on both faces in direct contact with the soil. A suggestion is given for enhanced pipe layouts that meet these requirements and lead to up to a 15.8% increase of exchanged heat rate for the studied case.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground source heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermo-active diaphragm wall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy geostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomaselli, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angelotti, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9039-2102</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Renewable energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">147, Seite 2748-2760</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412091</subfield><subfield code="w">(DE-600)2001449-1</subfield><subfield code="w">(DE-576)252613937</subfield><subfield code="x">1879-0682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">pages:2748-2760</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="h">2748-2760</subfield></datafield></record></collection>
|
score |
7.399042 |