Pretty good state transfer on Cayley graphs over dihedral groups
The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t )...
Ausführliche Beschreibung
Autor*in: |
Cao, Xiwang [verfasserIn] Wang, Dandan [verfasserIn] Feng, Keqin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Discrete mathematics - Amsterdam [u.a.] : Elsevier, 1971, 343 |
---|---|
Übergeordnetes Werk: |
volume:343 |
DOI / URN: |
10.1016/j.disc.2019.111636 |
---|
Katalog-ID: |
ELV003251683 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003251683 | ||
003 | DE-627 | ||
005 | 20230524142746.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.disc.2019.111636 |2 doi | |
035 | |a (DE-627)ELV003251683 | ||
035 | |a (ELSEVIER)S0012-365X(19)30306-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.12 |2 bkl | ||
084 | |a 31.20 |2 bkl | ||
084 | |a 31.10 |2 bkl | ||
100 | 1 | |a Cao, Xiwang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pretty good state transfer on Cayley graphs over dihedral groups |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t ) ≔ exp ( − ı t A ) , where t ∈ R and ı = − 1 . The graph is said to admit a pretty good state transfer between a pair of vertices u and v if for any ε > 0 , there is a time t such that | e v t H ( t ) e u | ≥ 1 − ε . The state transfer is perfect if the above inequality holds for ε = 0 . Perfect (pretty good) state transfer on graphs has received extensive attention recently due to their significant applications in quantum information processing and quantum computations. In this paper, we study pretty good state transfer on Cayley graphs over dihedral groups. We find that if n is a power of 2, then Cay ( D n , S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided. We also show that this is basically the only case for a non-integral Cayley graph Cay ( D n , S ) to have PGST. | ||
650 | 4 | |a Perfect state transfer | |
650 | 4 | |a Pretty good state transfer | |
650 | 4 | |a Cayley graph | |
650 | 4 | |a Eigenvalues of a graph | |
700 | 1 | |a Wang, Dandan |e verfasserin |4 aut | |
700 | 1 | |a Feng, Keqin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Discrete mathematics |d Amsterdam [u.a.] : Elsevier, 1971 |g 343 |h Online-Ressource |w (DE-627)266882439 |w (DE-600)1468087-7 |w (DE-576)09411059X |7 nnns |
773 | 1 | 8 | |g volume:343 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.12 |j Kombinatorik |j Graphentheorie |
936 | b | k | |a 31.20 |j Algebra: Allgemeines |
936 | b | k | |a 31.10 |j Mathematische Logik |j Mengenlehre |
951 | |a AR | ||
952 | |d 343 |
author_variant |
x c xc d w dw k f kf |
---|---|
matchkey_str |
caoxiwangwangdandanfengkeqin:2019----:rtyodtttaseocyegaho |
hierarchy_sort_str |
2019 |
bklnumber |
31.12 31.20 31.10 |
publishDate |
2019 |
allfields |
10.1016/j.disc.2019.111636 doi (DE-627)ELV003251683 (ELSEVIER)S0012-365X(19)30306-1 DE-627 ger DE-627 rda eng 510 DE-600 31.12 bkl 31.20 bkl 31.10 bkl Cao, Xiwang verfasserin aut Pretty good state transfer on Cayley graphs over dihedral groups 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t ) ≔ exp ( − ı t A ) , where t ∈ R and ı = − 1 . The graph is said to admit a pretty good state transfer between a pair of vertices u and v if for any ε > 0 , there is a time t such that | e v t H ( t ) e u | ≥ 1 − ε . The state transfer is perfect if the above inequality holds for ε = 0 . Perfect (pretty good) state transfer on graphs has received extensive attention recently due to their significant applications in quantum information processing and quantum computations. In this paper, we study pretty good state transfer on Cayley graphs over dihedral groups. We find that if n is a power of 2, then Cay ( D n , S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided. We also show that this is basically the only case for a non-integral Cayley graph Cay ( D n , S ) to have PGST. Perfect state transfer Pretty good state transfer Cayley graph Eigenvalues of a graph Wang, Dandan verfasserin aut Feng, Keqin verfasserin aut Enthalten in Discrete mathematics Amsterdam [u.a.] : Elsevier, 1971 343 Online-Ressource (DE-627)266882439 (DE-600)1468087-7 (DE-576)09411059X nnns volume:343 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.12 Kombinatorik Graphentheorie 31.20 Algebra: Allgemeines 31.10 Mathematische Logik Mengenlehre AR 343 |
spelling |
10.1016/j.disc.2019.111636 doi (DE-627)ELV003251683 (ELSEVIER)S0012-365X(19)30306-1 DE-627 ger DE-627 rda eng 510 DE-600 31.12 bkl 31.20 bkl 31.10 bkl Cao, Xiwang verfasserin aut Pretty good state transfer on Cayley graphs over dihedral groups 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t ) ≔ exp ( − ı t A ) , where t ∈ R and ı = − 1 . The graph is said to admit a pretty good state transfer between a pair of vertices u and v if for any ε > 0 , there is a time t such that | e v t H ( t ) e u | ≥ 1 − ε . The state transfer is perfect if the above inequality holds for ε = 0 . Perfect (pretty good) state transfer on graphs has received extensive attention recently due to their significant applications in quantum information processing and quantum computations. In this paper, we study pretty good state transfer on Cayley graphs over dihedral groups. We find that if n is a power of 2, then Cay ( D n , S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided. We also show that this is basically the only case for a non-integral Cayley graph Cay ( D n , S ) to have PGST. Perfect state transfer Pretty good state transfer Cayley graph Eigenvalues of a graph Wang, Dandan verfasserin aut Feng, Keqin verfasserin aut Enthalten in Discrete mathematics Amsterdam [u.a.] : Elsevier, 1971 343 Online-Ressource (DE-627)266882439 (DE-600)1468087-7 (DE-576)09411059X nnns volume:343 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.12 Kombinatorik Graphentheorie 31.20 Algebra: Allgemeines 31.10 Mathematische Logik Mengenlehre AR 343 |
allfields_unstemmed |
10.1016/j.disc.2019.111636 doi (DE-627)ELV003251683 (ELSEVIER)S0012-365X(19)30306-1 DE-627 ger DE-627 rda eng 510 DE-600 31.12 bkl 31.20 bkl 31.10 bkl Cao, Xiwang verfasserin aut Pretty good state transfer on Cayley graphs over dihedral groups 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t ) ≔ exp ( − ı t A ) , where t ∈ R and ı = − 1 . The graph is said to admit a pretty good state transfer between a pair of vertices u and v if for any ε > 0 , there is a time t such that | e v t H ( t ) e u | ≥ 1 − ε . The state transfer is perfect if the above inequality holds for ε = 0 . Perfect (pretty good) state transfer on graphs has received extensive attention recently due to their significant applications in quantum information processing and quantum computations. In this paper, we study pretty good state transfer on Cayley graphs over dihedral groups. We find that if n is a power of 2, then Cay ( D n , S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided. We also show that this is basically the only case for a non-integral Cayley graph Cay ( D n , S ) to have PGST. Perfect state transfer Pretty good state transfer Cayley graph Eigenvalues of a graph Wang, Dandan verfasserin aut Feng, Keqin verfasserin aut Enthalten in Discrete mathematics Amsterdam [u.a.] : Elsevier, 1971 343 Online-Ressource (DE-627)266882439 (DE-600)1468087-7 (DE-576)09411059X nnns volume:343 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.12 Kombinatorik Graphentheorie 31.20 Algebra: Allgemeines 31.10 Mathematische Logik Mengenlehre AR 343 |
allfieldsGer |
10.1016/j.disc.2019.111636 doi (DE-627)ELV003251683 (ELSEVIER)S0012-365X(19)30306-1 DE-627 ger DE-627 rda eng 510 DE-600 31.12 bkl 31.20 bkl 31.10 bkl Cao, Xiwang verfasserin aut Pretty good state transfer on Cayley graphs over dihedral groups 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t ) ≔ exp ( − ı t A ) , where t ∈ R and ı = − 1 . The graph is said to admit a pretty good state transfer between a pair of vertices u and v if for any ε > 0 , there is a time t such that | e v t H ( t ) e u | ≥ 1 − ε . The state transfer is perfect if the above inequality holds for ε = 0 . Perfect (pretty good) state transfer on graphs has received extensive attention recently due to their significant applications in quantum information processing and quantum computations. In this paper, we study pretty good state transfer on Cayley graphs over dihedral groups. We find that if n is a power of 2, then Cay ( D n , S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided. We also show that this is basically the only case for a non-integral Cayley graph Cay ( D n , S ) to have PGST. Perfect state transfer Pretty good state transfer Cayley graph Eigenvalues of a graph Wang, Dandan verfasserin aut Feng, Keqin verfasserin aut Enthalten in Discrete mathematics Amsterdam [u.a.] : Elsevier, 1971 343 Online-Ressource (DE-627)266882439 (DE-600)1468087-7 (DE-576)09411059X nnns volume:343 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.12 Kombinatorik Graphentheorie 31.20 Algebra: Allgemeines 31.10 Mathematische Logik Mengenlehre AR 343 |
allfieldsSound |
10.1016/j.disc.2019.111636 doi (DE-627)ELV003251683 (ELSEVIER)S0012-365X(19)30306-1 DE-627 ger DE-627 rda eng 510 DE-600 31.12 bkl 31.20 bkl 31.10 bkl Cao, Xiwang verfasserin aut Pretty good state transfer on Cayley graphs over dihedral groups 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t ) ≔ exp ( − ı t A ) , where t ∈ R and ı = − 1 . The graph is said to admit a pretty good state transfer between a pair of vertices u and v if for any ε > 0 , there is a time t such that | e v t H ( t ) e u | ≥ 1 − ε . The state transfer is perfect if the above inequality holds for ε = 0 . Perfect (pretty good) state transfer on graphs has received extensive attention recently due to their significant applications in quantum information processing and quantum computations. In this paper, we study pretty good state transfer on Cayley graphs over dihedral groups. We find that if n is a power of 2, then Cay ( D n , S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided. We also show that this is basically the only case for a non-integral Cayley graph Cay ( D n , S ) to have PGST. Perfect state transfer Pretty good state transfer Cayley graph Eigenvalues of a graph Wang, Dandan verfasserin aut Feng, Keqin verfasserin aut Enthalten in Discrete mathematics Amsterdam [u.a.] : Elsevier, 1971 343 Online-Ressource (DE-627)266882439 (DE-600)1468087-7 (DE-576)09411059X nnns volume:343 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.12 Kombinatorik Graphentheorie 31.20 Algebra: Allgemeines 31.10 Mathematische Logik Mengenlehre AR 343 |
language |
English |
source |
Enthalten in Discrete mathematics 343 volume:343 |
sourceStr |
Enthalten in Discrete mathematics 343 volume:343 |
format_phy_str_mv |
Article |
bklname |
Kombinatorik Graphentheorie Algebra: Allgemeines Mathematische Logik Mengenlehre |
institution |
findex.gbv.de |
topic_facet |
Perfect state transfer Pretty good state transfer Cayley graph Eigenvalues of a graph |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Discrete mathematics |
authorswithroles_txt_mv |
Cao, Xiwang @@aut@@ Wang, Dandan @@aut@@ Feng, Keqin @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
266882439 |
dewey-sort |
3510 |
id |
ELV003251683 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003251683</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.disc.2019.111636</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003251683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0012-365X(19)30306-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cao, Xiwang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pretty good state transfer on Cayley graphs over dihedral groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t ) ≔ exp ( − ı t A ) , where t ∈ R and ı = − 1 . The graph is said to admit a pretty good state transfer between a pair of vertices u and v if for any ε > 0 , there is a time t such that | e v t H ( t ) e u | ≥ 1 − ε . The state transfer is perfect if the above inequality holds for ε = 0 . Perfect (pretty good) state transfer on graphs has received extensive attention recently due to their significant applications in quantum information processing and quantum computations. In this paper, we study pretty good state transfer on Cayley graphs over dihedral groups. We find that if n is a power of 2, then Cay ( D n , S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided. We also show that this is basically the only case for a non-integral Cayley graph Cay ( D n , S ) to have PGST.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perfect state transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pretty good state transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cayley graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalues of a graph</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dandan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Keqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Discrete mathematics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1971</subfield><subfield code="g">343</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266882439</subfield><subfield code="w">(DE-600)1468087-7</subfield><subfield code="w">(DE-576)09411059X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:343</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.12</subfield><subfield code="j">Kombinatorik</subfield><subfield code="j">Graphentheorie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.20</subfield><subfield code="j">Algebra: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.10</subfield><subfield code="j">Mathematische Logik</subfield><subfield code="j">Mengenlehre</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">343</subfield></datafield></record></collection>
|
author |
Cao, Xiwang |
spellingShingle |
Cao, Xiwang ddc 510 bkl 31.12 bkl 31.20 bkl 31.10 misc Perfect state transfer misc Pretty good state transfer misc Cayley graph misc Eigenvalues of a graph Pretty good state transfer on Cayley graphs over dihedral groups |
authorStr |
Cao, Xiwang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266882439 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 DE-600 31.12 bkl 31.20 bkl 31.10 bkl Pretty good state transfer on Cayley graphs over dihedral groups Perfect state transfer Pretty good state transfer Cayley graph Eigenvalues of a graph |
topic |
ddc 510 bkl 31.12 bkl 31.20 bkl 31.10 misc Perfect state transfer misc Pretty good state transfer misc Cayley graph misc Eigenvalues of a graph |
topic_unstemmed |
ddc 510 bkl 31.12 bkl 31.20 bkl 31.10 misc Perfect state transfer misc Pretty good state transfer misc Cayley graph misc Eigenvalues of a graph |
topic_browse |
ddc 510 bkl 31.12 bkl 31.20 bkl 31.10 misc Perfect state transfer misc Pretty good state transfer misc Cayley graph misc Eigenvalues of a graph |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Discrete mathematics |
hierarchy_parent_id |
266882439 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Discrete mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266882439 (DE-600)1468087-7 (DE-576)09411059X |
title |
Pretty good state transfer on Cayley graphs over dihedral groups |
ctrlnum |
(DE-627)ELV003251683 (ELSEVIER)S0012-365X(19)30306-1 |
title_full |
Pretty good state transfer on Cayley graphs over dihedral groups |
author_sort |
Cao, Xiwang |
journal |
Discrete mathematics |
journalStr |
Discrete mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Cao, Xiwang Wang, Dandan Feng, Keqin |
container_volume |
343 |
class |
510 DE-600 31.12 bkl 31.20 bkl 31.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cao, Xiwang |
doi_str_mv |
10.1016/j.disc.2019.111636 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
pretty good state transfer on cayley graphs over dihedral groups |
title_auth |
Pretty good state transfer on Cayley graphs over dihedral groups |
abstract |
The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t ) ≔ exp ( − ı t A ) , where t ∈ R and ı = − 1 . The graph is said to admit a pretty good state transfer between a pair of vertices u and v if for any ε > 0 , there is a time t such that | e v t H ( t ) e u | ≥ 1 − ε . The state transfer is perfect if the above inequality holds for ε = 0 . Perfect (pretty good) state transfer on graphs has received extensive attention recently due to their significant applications in quantum information processing and quantum computations. In this paper, we study pretty good state transfer on Cayley graphs over dihedral groups. We find that if n is a power of 2, then Cay ( D n , S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided. We also show that this is basically the only case for a non-integral Cayley graph Cay ( D n , S ) to have PGST. |
abstractGer |
The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t ) ≔ exp ( − ı t A ) , where t ∈ R and ı = − 1 . The graph is said to admit a pretty good state transfer between a pair of vertices u and v if for any ε > 0 , there is a time t such that | e v t H ( t ) e u | ≥ 1 − ε . The state transfer is perfect if the above inequality holds for ε = 0 . Perfect (pretty good) state transfer on graphs has received extensive attention recently due to their significant applications in quantum information processing and quantum computations. In this paper, we study pretty good state transfer on Cayley graphs over dihedral groups. We find that if n is a power of 2, then Cay ( D n , S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided. We also show that this is basically the only case for a non-integral Cayley graph Cay ( D n , S ) to have PGST. |
abstract_unstemmed |
The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t ) ≔ exp ( − ı t A ) , where t ∈ R and ı = − 1 . The graph is said to admit a pretty good state transfer between a pair of vertices u and v if for any ε > 0 , there is a time t such that | e v t H ( t ) e u | ≥ 1 − ε . The state transfer is perfect if the above inequality holds for ε = 0 . Perfect (pretty good) state transfer on graphs has received extensive attention recently due to their significant applications in quantum information processing and quantum computations. In this paper, we study pretty good state transfer on Cayley graphs over dihedral groups. We find that if n is a power of 2, then Cay ( D n , S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided. We also show that this is basically the only case for a non-integral Cayley graph Cay ( D n , S ) to have PGST. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Pretty good state transfer on Cayley graphs over dihedral groups |
remote_bool |
true |
author2 |
Wang, Dandan Feng, Keqin |
author2Str |
Wang, Dandan Feng, Keqin |
ppnlink |
266882439 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.disc.2019.111636 |
up_date |
2024-07-06T19:00:11.698Z |
_version_ |
1803857335890739200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003251683</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.disc.2019.111636</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003251683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0012-365X(19)30306-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cao, Xiwang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pretty good state transfer on Cayley graphs over dihedral groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The transition matrix of a graph Γ with the adjacency matrix A is defined by H ( t ) ≔ exp ( − ı t A ) , where t ∈ R and ı = − 1 . The graph is said to admit a pretty good state transfer between a pair of vertices u and v if for any ε > 0 , there is a time t such that | e v t H ( t ) e u | ≥ 1 − ε . The state transfer is perfect if the above inequality holds for ε = 0 . Perfect (pretty good) state transfer on graphs has received extensive attention recently due to their significant applications in quantum information processing and quantum computations. In this paper, we study pretty good state transfer on Cayley graphs over dihedral groups. We find that if n is a power of 2, then Cay ( D n , S ) exhibits pretty good state transfer for some subset S in D n , some concrete constructions are provided. We also show that this is basically the only case for a non-integral Cayley graph Cay ( D n , S ) to have PGST.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perfect state transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pretty good state transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cayley graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalues of a graph</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dandan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Keqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Discrete mathematics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1971</subfield><subfield code="g">343</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266882439</subfield><subfield code="w">(DE-600)1468087-7</subfield><subfield code="w">(DE-576)09411059X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:343</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.12</subfield><subfield code="j">Kombinatorik</subfield><subfield code="j">Graphentheorie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.20</subfield><subfield code="j">Algebra: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.10</subfield><subfield code="j">Mathematische Logik</subfield><subfield code="j">Mengenlehre</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">343</subfield></datafield></record></collection>
|
score |
7.401573 |