Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H
We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth proce...
Ausführliche Beschreibung
Autor*in: |
Zhong, Lijie [verfasserIn] Gan, Shiyu [verfasserIn] Fu, Xingguo [verfasserIn] Li, Fenghua [verfasserIn] Han, Dongxue [verfasserIn] Guo, Liping [verfasserIn] Niu, Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Electrochimica acta - New York, NY [u.a.] : Elsevier, 1959, 89, Seite 222-228 |
---|---|
Übergeordnetes Werk: |
volume:89 ; pages:222-228 |
DOI / URN: |
10.1016/j.electacta.2012.10.161 |
---|
Katalog-ID: |
ELV003291383 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003291383 | ||
003 | DE-627 | ||
005 | 20230524142916.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.electacta.2012.10.161 |2 doi | |
035 | |a (DE-627)ELV003291383 | ||
035 | |a (ELSEVIER)S0013-4686(12)01775-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 35.00 |2 bkl | ||
100 | 1 | |a Zhong, Lijie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H |
264 | 1 | |c 2012 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth processes of AgNCs on graphene substrate. This method also allows the observation of AgNCs growing from a particle shape to a nanoplate form by increasing the growth time with the maximum lateral scale up to micrometer scale range. A proposed mechanism for these silver nanoplates (AgNPLs) formation was the oriented growth of small AgNCs and two-dimensional graphene template inducing effect. Such obtained graphene–AgNPLs hybrid thin films exhibit remarkable electrocatalytical activity toward H2O2 electrochemical reduction. Further fabricated nonenzymatic H2O2 biosensor displays a fast amperometric response time of less than 2s and a good linear range from 2×10−5 M to 1×10−2 M with an estimated detection limit of 3×10−6 M. This biosensor also exhibits good stability (RSD, 1.3%), and high sensitivity of 183.5μAcm−2 mM−1 as well as high selectivity. The results show that this powerful double pulse potential electrochemical method could enable new opportunities in controllable preparation of multifarious nanomaterials on graphene substrate for their future applications. | ||
650 | 4 | |a Silver nanocrystals | |
650 | 4 | |a Graphene thin film | |
650 | 4 | |a Controlled growth | |
650 | 4 | |a H | |
700 | 1 | |a Gan, Shiyu |e verfasserin |4 aut | |
700 | 1 | |a Fu, Xingguo |e verfasserin |4 aut | |
700 | 1 | |a Li, Fenghua |e verfasserin |4 aut | |
700 | 1 | |a Han, Dongxue |e verfasserin |4 aut | |
700 | 1 | |a Guo, Liping |e verfasserin |4 aut | |
700 | 1 | |a Niu, Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Electrochimica acta |d New York, NY [u.a.] : Elsevier, 1959 |g 89, Seite 222-228 |h Online-Ressource |w (DE-627)300897561 |w (DE-600)1483548-4 |w (DE-576)094752451 |x 1873-3859 |7 nnns |
773 | 1 | 8 | |g volume:89 |g pages:222-228 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.00 |j Chemie: Allgemeines |
951 | |a AR | ||
952 | |d 89 |h 222-228 |
author_variant |
l z lz s g sg x f xf f l fl d h dh l g lg l n ln |
---|---|
matchkey_str |
article:18733859:2012----::lcrceialcnrlegotoslenncytlogahntifladplc |
hierarchy_sort_str |
2012 |
bklnumber |
35.00 |
publishDate |
2012 |
allfields |
10.1016/j.electacta.2012.10.161 doi (DE-627)ELV003291383 (ELSEVIER)S0013-4686(12)01775-6 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Zhong, Lijie verfasserin aut Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H 2012 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth processes of AgNCs on graphene substrate. This method also allows the observation of AgNCs growing from a particle shape to a nanoplate form by increasing the growth time with the maximum lateral scale up to micrometer scale range. A proposed mechanism for these silver nanoplates (AgNPLs) formation was the oriented growth of small AgNCs and two-dimensional graphene template inducing effect. Such obtained graphene–AgNPLs hybrid thin films exhibit remarkable electrocatalytical activity toward H2O2 electrochemical reduction. Further fabricated nonenzymatic H2O2 biosensor displays a fast amperometric response time of less than 2s and a good linear range from 2×10−5 M to 1×10−2 M with an estimated detection limit of 3×10−6 M. This biosensor also exhibits good stability (RSD, 1.3%), and high sensitivity of 183.5μAcm−2 mM−1 as well as high selectivity. The results show that this powerful double pulse potential electrochemical method could enable new opportunities in controllable preparation of multifarious nanomaterials on graphene substrate for their future applications. Silver nanocrystals Graphene thin film Controlled growth H Gan, Shiyu verfasserin aut Fu, Xingguo verfasserin aut Li, Fenghua verfasserin aut Han, Dongxue verfasserin aut Guo, Liping verfasserin aut Niu, Li verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 89, Seite 222-228 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:89 pages:222-228 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 89 222-228 |
spelling |
10.1016/j.electacta.2012.10.161 doi (DE-627)ELV003291383 (ELSEVIER)S0013-4686(12)01775-6 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Zhong, Lijie verfasserin aut Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H 2012 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth processes of AgNCs on graphene substrate. This method also allows the observation of AgNCs growing from a particle shape to a nanoplate form by increasing the growth time with the maximum lateral scale up to micrometer scale range. A proposed mechanism for these silver nanoplates (AgNPLs) formation was the oriented growth of small AgNCs and two-dimensional graphene template inducing effect. Such obtained graphene–AgNPLs hybrid thin films exhibit remarkable electrocatalytical activity toward H2O2 electrochemical reduction. Further fabricated nonenzymatic H2O2 biosensor displays a fast amperometric response time of less than 2s and a good linear range from 2×10−5 M to 1×10−2 M with an estimated detection limit of 3×10−6 M. This biosensor also exhibits good stability (RSD, 1.3%), and high sensitivity of 183.5μAcm−2 mM−1 as well as high selectivity. The results show that this powerful double pulse potential electrochemical method could enable new opportunities in controllable preparation of multifarious nanomaterials on graphene substrate for their future applications. Silver nanocrystals Graphene thin film Controlled growth H Gan, Shiyu verfasserin aut Fu, Xingguo verfasserin aut Li, Fenghua verfasserin aut Han, Dongxue verfasserin aut Guo, Liping verfasserin aut Niu, Li verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 89, Seite 222-228 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:89 pages:222-228 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 89 222-228 |
allfields_unstemmed |
10.1016/j.electacta.2012.10.161 doi (DE-627)ELV003291383 (ELSEVIER)S0013-4686(12)01775-6 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Zhong, Lijie verfasserin aut Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H 2012 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth processes of AgNCs on graphene substrate. This method also allows the observation of AgNCs growing from a particle shape to a nanoplate form by increasing the growth time with the maximum lateral scale up to micrometer scale range. A proposed mechanism for these silver nanoplates (AgNPLs) formation was the oriented growth of small AgNCs and two-dimensional graphene template inducing effect. Such obtained graphene–AgNPLs hybrid thin films exhibit remarkable electrocatalytical activity toward H2O2 electrochemical reduction. Further fabricated nonenzymatic H2O2 biosensor displays a fast amperometric response time of less than 2s and a good linear range from 2×10−5 M to 1×10−2 M with an estimated detection limit of 3×10−6 M. This biosensor also exhibits good stability (RSD, 1.3%), and high sensitivity of 183.5μAcm−2 mM−1 as well as high selectivity. The results show that this powerful double pulse potential electrochemical method could enable new opportunities in controllable preparation of multifarious nanomaterials on graphene substrate for their future applications. Silver nanocrystals Graphene thin film Controlled growth H Gan, Shiyu verfasserin aut Fu, Xingguo verfasserin aut Li, Fenghua verfasserin aut Han, Dongxue verfasserin aut Guo, Liping verfasserin aut Niu, Li verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 89, Seite 222-228 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:89 pages:222-228 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 89 222-228 |
allfieldsGer |
10.1016/j.electacta.2012.10.161 doi (DE-627)ELV003291383 (ELSEVIER)S0013-4686(12)01775-6 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Zhong, Lijie verfasserin aut Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H 2012 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth processes of AgNCs on graphene substrate. This method also allows the observation of AgNCs growing from a particle shape to a nanoplate form by increasing the growth time with the maximum lateral scale up to micrometer scale range. A proposed mechanism for these silver nanoplates (AgNPLs) formation was the oriented growth of small AgNCs and two-dimensional graphene template inducing effect. Such obtained graphene–AgNPLs hybrid thin films exhibit remarkable electrocatalytical activity toward H2O2 electrochemical reduction. Further fabricated nonenzymatic H2O2 biosensor displays a fast amperometric response time of less than 2s and a good linear range from 2×10−5 M to 1×10−2 M with an estimated detection limit of 3×10−6 M. This biosensor also exhibits good stability (RSD, 1.3%), and high sensitivity of 183.5μAcm−2 mM−1 as well as high selectivity. The results show that this powerful double pulse potential electrochemical method could enable new opportunities in controllable preparation of multifarious nanomaterials on graphene substrate for their future applications. Silver nanocrystals Graphene thin film Controlled growth H Gan, Shiyu verfasserin aut Fu, Xingguo verfasserin aut Li, Fenghua verfasserin aut Han, Dongxue verfasserin aut Guo, Liping verfasserin aut Niu, Li verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 89, Seite 222-228 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:89 pages:222-228 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 89 222-228 |
allfieldsSound |
10.1016/j.electacta.2012.10.161 doi (DE-627)ELV003291383 (ELSEVIER)S0013-4686(12)01775-6 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Zhong, Lijie verfasserin aut Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H 2012 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth processes of AgNCs on graphene substrate. This method also allows the observation of AgNCs growing from a particle shape to a nanoplate form by increasing the growth time with the maximum lateral scale up to micrometer scale range. A proposed mechanism for these silver nanoplates (AgNPLs) formation was the oriented growth of small AgNCs and two-dimensional graphene template inducing effect. Such obtained graphene–AgNPLs hybrid thin films exhibit remarkable electrocatalytical activity toward H2O2 electrochemical reduction. Further fabricated nonenzymatic H2O2 biosensor displays a fast amperometric response time of less than 2s and a good linear range from 2×10−5 M to 1×10−2 M with an estimated detection limit of 3×10−6 M. This biosensor also exhibits good stability (RSD, 1.3%), and high sensitivity of 183.5μAcm−2 mM−1 as well as high selectivity. The results show that this powerful double pulse potential electrochemical method could enable new opportunities in controllable preparation of multifarious nanomaterials on graphene substrate for their future applications. Silver nanocrystals Graphene thin film Controlled growth H Gan, Shiyu verfasserin aut Fu, Xingguo verfasserin aut Li, Fenghua verfasserin aut Han, Dongxue verfasserin aut Guo, Liping verfasserin aut Niu, Li verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 89, Seite 222-228 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:89 pages:222-228 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 89 222-228 |
language |
English |
source |
Enthalten in Electrochimica acta 89, Seite 222-228 volume:89 pages:222-228 |
sourceStr |
Enthalten in Electrochimica acta 89, Seite 222-228 volume:89 pages:222-228 |
format_phy_str_mv |
Article |
bklname |
Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Silver nanocrystals Graphene thin film Controlled growth H |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Electrochimica acta |
authorswithroles_txt_mv |
Zhong, Lijie @@aut@@ Gan, Shiyu @@aut@@ Fu, Xingguo @@aut@@ Li, Fenghua @@aut@@ Han, Dongxue @@aut@@ Guo, Liping @@aut@@ Niu, Li @@aut@@ |
publishDateDaySort_date |
2012-01-01T00:00:00Z |
hierarchy_top_id |
300897561 |
dewey-sort |
3540 |
id |
ELV003291383 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003291383</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142916.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.electacta.2012.10.161</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003291383</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-4686(12)01775-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhong, Lijie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth processes of AgNCs on graphene substrate. This method also allows the observation of AgNCs growing from a particle shape to a nanoplate form by increasing the growth time with the maximum lateral scale up to micrometer scale range. A proposed mechanism for these silver nanoplates (AgNPLs) formation was the oriented growth of small AgNCs and two-dimensional graphene template inducing effect. Such obtained graphene–AgNPLs hybrid thin films exhibit remarkable electrocatalytical activity toward H2O2 electrochemical reduction. Further fabricated nonenzymatic H2O2 biosensor displays a fast amperometric response time of less than 2s and a good linear range from 2×10−5 M to 1×10−2 M with an estimated detection limit of 3×10−6 M. This biosensor also exhibits good stability (RSD, 1.3%), and high sensitivity of 183.5μAcm−2 mM−1 as well as high selectivity. The results show that this powerful double pulse potential electrochemical method could enable new opportunities in controllable preparation of multifarious nanomaterials on graphene substrate for their future applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silver nanocrystals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene thin film</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Controlled growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gan, Shiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Xingguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fenghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Dongxue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Liping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Electrochimica acta</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1959</subfield><subfield code="g">89, Seite 222-228</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300897561</subfield><subfield code="w">(DE-600)1483548-4</subfield><subfield code="w">(DE-576)094752451</subfield><subfield code="x">1873-3859</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">pages:222-228</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="h">222-228</subfield></datafield></record></collection>
|
author |
Zhong, Lijie |
spellingShingle |
Zhong, Lijie ddc 540 bkl 35.00 misc Silver nanocrystals misc Graphene thin film misc Controlled growth misc H Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H |
authorStr |
Zhong, Lijie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300897561 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3859 |
topic_title |
540 DE-600 35.00 bkl Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H Silver nanocrystals Graphene thin film Controlled growth H |
topic |
ddc 540 bkl 35.00 misc Silver nanocrystals misc Graphene thin film misc Controlled growth misc H |
topic_unstemmed |
ddc 540 bkl 35.00 misc Silver nanocrystals misc Graphene thin film misc Controlled growth misc H |
topic_browse |
ddc 540 bkl 35.00 misc Silver nanocrystals misc Graphene thin film misc Controlled growth misc H |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electrochimica acta |
hierarchy_parent_id |
300897561 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Electrochimica acta |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 |
title |
Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H |
ctrlnum |
(DE-627)ELV003291383 (ELSEVIER)S0013-4686(12)01775-6 |
title_full |
Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H |
author_sort |
Zhong, Lijie |
journal |
Electrochimica acta |
journalStr |
Electrochimica acta |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
zzz |
container_start_page |
222 |
author_browse |
Zhong, Lijie Gan, Shiyu Fu, Xingguo Li, Fenghua Han, Dongxue Guo, Liping Niu, Li |
container_volume |
89 |
class |
540 DE-600 35.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhong, Lijie |
doi_str_mv |
10.1016/j.electacta.2012.10.161 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic h |
title_auth |
Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H |
abstract |
We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth processes of AgNCs on graphene substrate. This method also allows the observation of AgNCs growing from a particle shape to a nanoplate form by increasing the growth time with the maximum lateral scale up to micrometer scale range. A proposed mechanism for these silver nanoplates (AgNPLs) formation was the oriented growth of small AgNCs and two-dimensional graphene template inducing effect. Such obtained graphene–AgNPLs hybrid thin films exhibit remarkable electrocatalytical activity toward H2O2 electrochemical reduction. Further fabricated nonenzymatic H2O2 biosensor displays a fast amperometric response time of less than 2s and a good linear range from 2×10−5 M to 1×10−2 M with an estimated detection limit of 3×10−6 M. This biosensor also exhibits good stability (RSD, 1.3%), and high sensitivity of 183.5μAcm−2 mM−1 as well as high selectivity. The results show that this powerful double pulse potential electrochemical method could enable new opportunities in controllable preparation of multifarious nanomaterials on graphene substrate for their future applications. |
abstractGer |
We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth processes of AgNCs on graphene substrate. This method also allows the observation of AgNCs growing from a particle shape to a nanoplate form by increasing the growth time with the maximum lateral scale up to micrometer scale range. A proposed mechanism for these silver nanoplates (AgNPLs) formation was the oriented growth of small AgNCs and two-dimensional graphene template inducing effect. Such obtained graphene–AgNPLs hybrid thin films exhibit remarkable electrocatalytical activity toward H2O2 electrochemical reduction. Further fabricated nonenzymatic H2O2 biosensor displays a fast amperometric response time of less than 2s and a good linear range from 2×10−5 M to 1×10−2 M with an estimated detection limit of 3×10−6 M. This biosensor also exhibits good stability (RSD, 1.3%), and high sensitivity of 183.5μAcm−2 mM−1 as well as high selectivity. The results show that this powerful double pulse potential electrochemical method could enable new opportunities in controllable preparation of multifarious nanomaterials on graphene substrate for their future applications. |
abstract_unstemmed |
We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth processes of AgNCs on graphene substrate. This method also allows the observation of AgNCs growing from a particle shape to a nanoplate form by increasing the growth time with the maximum lateral scale up to micrometer scale range. A proposed mechanism for these silver nanoplates (AgNPLs) formation was the oriented growth of small AgNCs and two-dimensional graphene template inducing effect. Such obtained graphene–AgNPLs hybrid thin films exhibit remarkable electrocatalytical activity toward H2O2 electrochemical reduction. Further fabricated nonenzymatic H2O2 biosensor displays a fast amperometric response time of less than 2s and a good linear range from 2×10−5 M to 1×10−2 M with an estimated detection limit of 3×10−6 M. This biosensor also exhibits good stability (RSD, 1.3%), and high sensitivity of 183.5μAcm−2 mM−1 as well as high selectivity. The results show that this powerful double pulse potential electrochemical method could enable new opportunities in controllable preparation of multifarious nanomaterials on graphene substrate for their future applications. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H |
remote_bool |
true |
author2 |
Gan, Shiyu Fu, Xingguo Li, Fenghua Han, Dongxue Guo, Liping Niu, Li |
author2Str |
Gan, Shiyu Fu, Xingguo Li, Fenghua Han, Dongxue Guo, Liping Niu, Li |
ppnlink |
300897561 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.electacta.2012.10.161 |
up_date |
2024-07-06T19:08:06.738Z |
_version_ |
1803857834005233664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003291383</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142916.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.electacta.2012.10.161</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003291383</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-4686(12)01775-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhong, Lijie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrochemically controlled growth of silver nanocrystals on graphene thin film and applications for efficient nonenzymatic H</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We report a double pulse electrochemical method to controllably prepare silver nanocrystals (AgNCs) on graphene thin film electrode for fabricating a high performance H2O2 biosensor. The approach relies on two potential pulses that can independently control the nucleation and subsequent growth processes of AgNCs on graphene substrate. This method also allows the observation of AgNCs growing from a particle shape to a nanoplate form by increasing the growth time with the maximum lateral scale up to micrometer scale range. A proposed mechanism for these silver nanoplates (AgNPLs) formation was the oriented growth of small AgNCs and two-dimensional graphene template inducing effect. Such obtained graphene–AgNPLs hybrid thin films exhibit remarkable electrocatalytical activity toward H2O2 electrochemical reduction. Further fabricated nonenzymatic H2O2 biosensor displays a fast amperometric response time of less than 2s and a good linear range from 2×10−5 M to 1×10−2 M with an estimated detection limit of 3×10−6 M. This biosensor also exhibits good stability (RSD, 1.3%), and high sensitivity of 183.5μAcm−2 mM−1 as well as high selectivity. The results show that this powerful double pulse potential electrochemical method could enable new opportunities in controllable preparation of multifarious nanomaterials on graphene substrate for their future applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silver nanocrystals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene thin film</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Controlled growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gan, Shiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Xingguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fenghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Dongxue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Liping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Electrochimica acta</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1959</subfield><subfield code="g">89, Seite 222-228</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300897561</subfield><subfield code="w">(DE-600)1483548-4</subfield><subfield code="w">(DE-576)094752451</subfield><subfield code="x">1873-3859</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">pages:222-228</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="h">222-228</subfield></datafield></record></collection>
|
score |
7.4022045 |