Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation
Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous...
Ausführliche Beschreibung
Autor*in: |
Hassan, Bryar A. [verfasserIn] Rashid, Tarik A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Evolutionary optimisation algorithms |
---|
Übergeordnetes Werk: |
Enthalten in: Applied mathematics and computation - New York, NY : Elsevier, 1975, 370 |
---|---|
Übergeordnetes Werk: |
volume:370 |
DOI / URN: |
10.1016/j.amc.2019.124919 |
---|
Katalog-ID: |
ELV003299899 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003299899 | ||
003 | DE-627 | ||
005 | 20230524162513.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.amc.2019.124919 |2 doi | |
035 | |a (DE-627)ELV003299899 | ||
035 | |a (ELSEVIER)S0096-3003(19)30911-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.80 |2 bkl | ||
084 | |a 31.76 |2 bkl | ||
100 | 1 | |a Hassan, Bryar A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA. | ||
650 | 4 | |a Swarm intelligence | |
650 | 4 | |a Evolutionary optimisation algorithms | |
650 | 4 | |a Backtracking search optimisation algorithm | |
650 | 4 | |a Optimisation problems | |
650 | 4 | |a BSA applications | |
650 | 4 | |a Performance evaluation | |
700 | 1 | |a Rashid, Tarik A. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied mathematics and computation |d New York, NY : Elsevier, 1975 |g 370 |h Online-Ressource |w (DE-627)26555022X |w (DE-600)1465428-3 |w (DE-576)078314976 |7 nnns |
773 | 1 | 8 | |g volume:370 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 31.80 |j Angewandte Mathematik |
936 | b | k | |a 31.76 |j Numerische Mathematik |
951 | |a AR | ||
952 | |d 370 |
author_variant |
b a h ba bah t a r ta tar |
---|---|
matchkey_str |
hassanbryararashidtarika:2019----:prtoafaeokorcnavneibctaknsacotmstoagrtmssea |
hierarchy_sort_str |
2019 |
bklnumber |
31.80 31.76 |
publishDate |
2019 |
allfields |
10.1016/j.amc.2019.124919 doi (DE-627)ELV003299899 (ELSEVIER)S0096-3003(19)30911-7 DE-627 ger DE-627 rda eng 510 DE-600 31.80 bkl 31.76 bkl Hassan, Bryar A. verfasserin aut Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA. Swarm intelligence Evolutionary optimisation algorithms Backtracking search optimisation algorithm Optimisation problems BSA applications Performance evaluation Rashid, Tarik A. verfasserin aut Enthalten in Applied mathematics and computation New York, NY : Elsevier, 1975 370 Online-Ressource (DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 nnns volume:370 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.80 Angewandte Mathematik 31.76 Numerische Mathematik AR 370 |
spelling |
10.1016/j.amc.2019.124919 doi (DE-627)ELV003299899 (ELSEVIER)S0096-3003(19)30911-7 DE-627 ger DE-627 rda eng 510 DE-600 31.80 bkl 31.76 bkl Hassan, Bryar A. verfasserin aut Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA. Swarm intelligence Evolutionary optimisation algorithms Backtracking search optimisation algorithm Optimisation problems BSA applications Performance evaluation Rashid, Tarik A. verfasserin aut Enthalten in Applied mathematics and computation New York, NY : Elsevier, 1975 370 Online-Ressource (DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 nnns volume:370 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.80 Angewandte Mathematik 31.76 Numerische Mathematik AR 370 |
allfields_unstemmed |
10.1016/j.amc.2019.124919 doi (DE-627)ELV003299899 (ELSEVIER)S0096-3003(19)30911-7 DE-627 ger DE-627 rda eng 510 DE-600 31.80 bkl 31.76 bkl Hassan, Bryar A. verfasserin aut Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA. Swarm intelligence Evolutionary optimisation algorithms Backtracking search optimisation algorithm Optimisation problems BSA applications Performance evaluation Rashid, Tarik A. verfasserin aut Enthalten in Applied mathematics and computation New York, NY : Elsevier, 1975 370 Online-Ressource (DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 nnns volume:370 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.80 Angewandte Mathematik 31.76 Numerische Mathematik AR 370 |
allfieldsGer |
10.1016/j.amc.2019.124919 doi (DE-627)ELV003299899 (ELSEVIER)S0096-3003(19)30911-7 DE-627 ger DE-627 rda eng 510 DE-600 31.80 bkl 31.76 bkl Hassan, Bryar A. verfasserin aut Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA. Swarm intelligence Evolutionary optimisation algorithms Backtracking search optimisation algorithm Optimisation problems BSA applications Performance evaluation Rashid, Tarik A. verfasserin aut Enthalten in Applied mathematics and computation New York, NY : Elsevier, 1975 370 Online-Ressource (DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 nnns volume:370 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.80 Angewandte Mathematik 31.76 Numerische Mathematik AR 370 |
allfieldsSound |
10.1016/j.amc.2019.124919 doi (DE-627)ELV003299899 (ELSEVIER)S0096-3003(19)30911-7 DE-627 ger DE-627 rda eng 510 DE-600 31.80 bkl 31.76 bkl Hassan, Bryar A. verfasserin aut Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA. Swarm intelligence Evolutionary optimisation algorithms Backtracking search optimisation algorithm Optimisation problems BSA applications Performance evaluation Rashid, Tarik A. verfasserin aut Enthalten in Applied mathematics and computation New York, NY : Elsevier, 1975 370 Online-Ressource (DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 nnns volume:370 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 31.80 Angewandte Mathematik 31.76 Numerische Mathematik AR 370 |
language |
English |
source |
Enthalten in Applied mathematics and computation 370 volume:370 |
sourceStr |
Enthalten in Applied mathematics and computation 370 volume:370 |
format_phy_str_mv |
Article |
bklname |
Angewandte Mathematik Numerische Mathematik |
institution |
findex.gbv.de |
topic_facet |
Swarm intelligence Evolutionary optimisation algorithms Backtracking search optimisation algorithm Optimisation problems BSA applications Performance evaluation |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applied mathematics and computation |
authorswithroles_txt_mv |
Hassan, Bryar A. @@aut@@ Rashid, Tarik A. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
26555022X |
dewey-sort |
3510 |
id |
ELV003299899 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003299899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162513.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.amc.2019.124919</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003299899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0096-3003(19)30911-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hassan, Bryar A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Swarm intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary optimisation algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backtracking search optimisation algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimisation problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BSA applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance evaluation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rashid, Tarik A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics and computation</subfield><subfield code="d">New York, NY : Elsevier, 1975</subfield><subfield code="g">370</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)26555022X</subfield><subfield code="w">(DE-600)1465428-3</subfield><subfield code="w">(DE-576)078314976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.76</subfield><subfield code="j">Numerische Mathematik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">370</subfield></datafield></record></collection>
|
author |
Hassan, Bryar A. |
spellingShingle |
Hassan, Bryar A. ddc 510 bkl 31.80 bkl 31.76 misc Swarm intelligence misc Evolutionary optimisation algorithms misc Backtracking search optimisation algorithm misc Optimisation problems misc BSA applications misc Performance evaluation Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation |
authorStr |
Hassan, Bryar A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)26555022X |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 DE-600 31.80 bkl 31.76 bkl Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation Swarm intelligence Evolutionary optimisation algorithms Backtracking search optimisation algorithm Optimisation problems BSA applications Performance evaluation |
topic |
ddc 510 bkl 31.80 bkl 31.76 misc Swarm intelligence misc Evolutionary optimisation algorithms misc Backtracking search optimisation algorithm misc Optimisation problems misc BSA applications misc Performance evaluation |
topic_unstemmed |
ddc 510 bkl 31.80 bkl 31.76 misc Swarm intelligence misc Evolutionary optimisation algorithms misc Backtracking search optimisation algorithm misc Optimisation problems misc BSA applications misc Performance evaluation |
topic_browse |
ddc 510 bkl 31.80 bkl 31.76 misc Swarm intelligence misc Evolutionary optimisation algorithms misc Backtracking search optimisation algorithm misc Optimisation problems misc BSA applications misc Performance evaluation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied mathematics and computation |
hierarchy_parent_id |
26555022X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Applied mathematics and computation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)26555022X (DE-600)1465428-3 (DE-576)078314976 |
title |
Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation |
ctrlnum |
(DE-627)ELV003299899 (ELSEVIER)S0096-3003(19)30911-7 |
title_full |
Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation |
author_sort |
Hassan, Bryar A. |
journal |
Applied mathematics and computation |
journalStr |
Applied mathematics and computation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Hassan, Bryar A. Rashid, Tarik A. |
container_volume |
370 |
class |
510 DE-600 31.80 bkl 31.76 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hassan, Bryar A. |
doi_str_mv |
10.1016/j.amc.2019.124919 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
operational framework for recent advances in backtracking search optimisation algorithm: a systematic review and performance evaluation |
title_auth |
Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation |
abstract |
Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA. |
abstractGer |
Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA. |
abstract_unstemmed |
Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation |
remote_bool |
true |
author2 |
Rashid, Tarik A. |
author2Str |
Rashid, Tarik A. |
ppnlink |
26555022X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.amc.2019.124919 |
up_date |
2024-07-06T19:09:45.469Z |
_version_ |
1803857937531142144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003299899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162513.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.amc.2019.124919</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003299899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0096-3003(19)30911-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hassan, Bryar A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Swarm intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary optimisation algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backtracking search optimisation algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimisation problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BSA applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance evaluation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rashid, Tarik A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics and computation</subfield><subfield code="d">New York, NY : Elsevier, 1975</subfield><subfield code="g">370</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)26555022X</subfield><subfield code="w">(DE-600)1465428-3</subfield><subfield code="w">(DE-576)078314976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="j">Angewandte Mathematik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.76</subfield><subfield code="j">Numerische Mathematik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">370</subfield></datafield></record></collection>
|
score |
7.4010096 |