Soybean yield prediction from UAV using multimodal data fusion and deep learning

Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Maimaitijiang, Maitiniyazi [verfasserIn]

Sagan, Vasit [verfasserIn]

Sidike, Paheding [verfasserIn]

Hartling, Sean [verfasserIn]

Esposito, Flavio [verfasserIn]

Fritschi, Felix B. [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2019

Schlagwörter:

Remote sensing

Yield prediction

Multimodality

Data fusion

Deep learning

Phenotyping

Spatial autocorrelation

Übergeordnetes Werk:

Enthalten in: Remote sensing of environment - Amsterdam [u.a.] : Elsevier Science, 1969, 237

Übergeordnetes Werk:

volume:237

DOI / URN:

10.1016/j.rse.2019.111599

Katalog-ID:

ELV003419118

Nicht das Richtige dabei?

Schreiben Sie uns!