Soybean yield prediction from UAV using multimodal data fusion and deep learning
Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology...
Ausführliche Beschreibung
Autor*in: |
Maimaitijiang, Maitiniyazi [verfasserIn] Sagan, Vasit [verfasserIn] Sidike, Paheding [verfasserIn] Hartling, Sean [verfasserIn] Esposito, Flavio [verfasserIn] Fritschi, Felix B. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Remote sensing of environment - Amsterdam [u.a.] : Elsevier Science, 1969, 237 |
---|---|
Übergeordnetes Werk: |
volume:237 |
DOI / URN: |
10.1016/j.rse.2019.111599 |
---|
Katalog-ID: |
ELV003419118 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003419118 | ||
003 | DE-627 | ||
005 | 20230524132320.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.rse.2019.111599 |2 doi | |
035 | |a (DE-627)ELV003419118 | ||
035 | |a (ELSEVIER)S0034-4257(19)30619-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 050 |a 550 |q DE-600 |
084 | |a 38.03 |2 bkl | ||
084 | |a 43.03 |2 bkl | ||
084 | |a 74.41 |2 bkl | ||
100 | 1 | |a Maimaitijiang, Maitiniyazi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Soybean yield prediction from UAV using multimodal data fusion and deep learning |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology facilitate cost-effective data collection through simultaneous multi-sensor/multimodal data collection at very high spatial and spectral resolutions. The objective of this study is to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral and thermal sensors to estimate soybean (Glycine max) grain yield within the framework of Deep Neural Network (DNN). RGB, multispectral, and thermal images were collected using a low-cost multi-sensory UAV from a test site in Columbia, Missouri, USA. Multimodal information, such as canopy spectral, structure, thermal and texture features, was extracted and combined to predict crop grain yield using Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), Support Vector Regression (SVR), input-level feature fusion based DNN (DNN-F1) and intermediate-level feature fusion based DNN (DNN-F2). The results can be summarized in three messages: (1) multimodal data fusion improves the yield prediction accuracy and is more adaptable to spatial variations; (2) DNN-based models improve yield prediction model accuracy: the highest accuracy was obtained by DNN-F2 with an R2 of 0.720 and a relative root mean square error (RMSE%) of 15.9%; (3) DNN-based models were less prone to saturation effects, and exhibited more adaptive performance in predicting grain yields across the Dwight, Pana and AG3432 soybean genotypes in our study. Furthermore, DNN-based models demonstrated consistent performance over space with less spatial dependency and variations. This study indicates that multimodal data fusion using low-cost UAV within a DNN framework can provide a relatively accurate and robust estimation of crop yield, and deliver valuable insight for high-throughput phenotyping and crop field management with high spatial precision. | ||
650 | 4 | |a Remote sensing | |
650 | 4 | |a Yield prediction | |
650 | 4 | |a Multimodality | |
650 | 4 | |a Data fusion | |
650 | 4 | |a Deep learning | |
650 | 4 | |a Phenotyping | |
650 | 4 | |a Spatial autocorrelation | |
700 | 1 | |a Sagan, Vasit |e verfasserin |0 (orcid)0000-0003-4375-2096 |4 aut | |
700 | 1 | |a Sidike, Paheding |e verfasserin |0 (orcid)0000-0003-4712-9672 |4 aut | |
700 | 1 | |a Hartling, Sean |e verfasserin |4 aut | |
700 | 1 | |a Esposito, Flavio |e verfasserin |4 aut | |
700 | 1 | |a Fritschi, Felix B. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Remote sensing of environment |d Amsterdam [u.a.] : Elsevier Science, 1969 |g 237 |h Online-Ressource |w (DE-627)306591324 |w (DE-600)1498713-2 |w (DE-576)098330268 |x 1879-0704 |7 nnns |
773 | 1 | 8 | |g volume:237 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.03 |j Methoden und Techniken der Geowissenschaften |
936 | b | k | |a 43.03 |j Methoden der Umweltforschung und des Umweltschutzes |
936 | b | k | |a 74.41 |j Luftaufnahmen |j Photogrammetrie |
951 | |a AR | ||
952 | |d 237 |
author_variant |
m m mm v s vs p s ps s h sh f e fe f b f fb fbf |
---|---|
matchkey_str |
article:18790704:2019----::obayedrdcinrmauigutmdlaau |
hierarchy_sort_str |
2019 |
bklnumber |
38.03 43.03 74.41 |
publishDate |
2019 |
allfields |
10.1016/j.rse.2019.111599 doi (DE-627)ELV003419118 (ELSEVIER)S0034-4257(19)30619-4 DE-627 ger DE-627 rda eng 050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Maimaitijiang, Maitiniyazi verfasserin aut Soybean yield prediction from UAV using multimodal data fusion and deep learning 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology facilitate cost-effective data collection through simultaneous multi-sensor/multimodal data collection at very high spatial and spectral resolutions. The objective of this study is to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral and thermal sensors to estimate soybean (Glycine max) grain yield within the framework of Deep Neural Network (DNN). RGB, multispectral, and thermal images were collected using a low-cost multi-sensory UAV from a test site in Columbia, Missouri, USA. Multimodal information, such as canopy spectral, structure, thermal and texture features, was extracted and combined to predict crop grain yield using Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), Support Vector Regression (SVR), input-level feature fusion based DNN (DNN-F1) and intermediate-level feature fusion based DNN (DNN-F2). The results can be summarized in three messages: (1) multimodal data fusion improves the yield prediction accuracy and is more adaptable to spatial variations; (2) DNN-based models improve yield prediction model accuracy: the highest accuracy was obtained by DNN-F2 with an R2 of 0.720 and a relative root mean square error (RMSE%) of 15.9%; (3) DNN-based models were less prone to saturation effects, and exhibited more adaptive performance in predicting grain yields across the Dwight, Pana and AG3432 soybean genotypes in our study. Furthermore, DNN-based models demonstrated consistent performance over space with less spatial dependency and variations. This study indicates that multimodal data fusion using low-cost UAV within a DNN framework can provide a relatively accurate and robust estimation of crop yield, and deliver valuable insight for high-throughput phenotyping and crop field management with high spatial precision. Remote sensing Yield prediction Multimodality Data fusion Deep learning Phenotyping Spatial autocorrelation Sagan, Vasit verfasserin (orcid)0000-0003-4375-2096 aut Sidike, Paheding verfasserin (orcid)0000-0003-4712-9672 aut Hartling, Sean verfasserin aut Esposito, Flavio verfasserin aut Fritschi, Felix B. verfasserin aut Enthalten in Remote sensing of environment Amsterdam [u.a.] : Elsevier Science, 1969 237 Online-Ressource (DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 1879-0704 nnns volume:237 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.03 Methoden und Techniken der Geowissenschaften 43.03 Methoden der Umweltforschung und des Umweltschutzes 74.41 Luftaufnahmen Photogrammetrie AR 237 |
spelling |
10.1016/j.rse.2019.111599 doi (DE-627)ELV003419118 (ELSEVIER)S0034-4257(19)30619-4 DE-627 ger DE-627 rda eng 050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Maimaitijiang, Maitiniyazi verfasserin aut Soybean yield prediction from UAV using multimodal data fusion and deep learning 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology facilitate cost-effective data collection through simultaneous multi-sensor/multimodal data collection at very high spatial and spectral resolutions. The objective of this study is to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral and thermal sensors to estimate soybean (Glycine max) grain yield within the framework of Deep Neural Network (DNN). RGB, multispectral, and thermal images were collected using a low-cost multi-sensory UAV from a test site in Columbia, Missouri, USA. Multimodal information, such as canopy spectral, structure, thermal and texture features, was extracted and combined to predict crop grain yield using Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), Support Vector Regression (SVR), input-level feature fusion based DNN (DNN-F1) and intermediate-level feature fusion based DNN (DNN-F2). The results can be summarized in three messages: (1) multimodal data fusion improves the yield prediction accuracy and is more adaptable to spatial variations; (2) DNN-based models improve yield prediction model accuracy: the highest accuracy was obtained by DNN-F2 with an R2 of 0.720 and a relative root mean square error (RMSE%) of 15.9%; (3) DNN-based models were less prone to saturation effects, and exhibited more adaptive performance in predicting grain yields across the Dwight, Pana and AG3432 soybean genotypes in our study. Furthermore, DNN-based models demonstrated consistent performance over space with less spatial dependency and variations. This study indicates that multimodal data fusion using low-cost UAV within a DNN framework can provide a relatively accurate and robust estimation of crop yield, and deliver valuable insight for high-throughput phenotyping and crop field management with high spatial precision. Remote sensing Yield prediction Multimodality Data fusion Deep learning Phenotyping Spatial autocorrelation Sagan, Vasit verfasserin (orcid)0000-0003-4375-2096 aut Sidike, Paheding verfasserin (orcid)0000-0003-4712-9672 aut Hartling, Sean verfasserin aut Esposito, Flavio verfasserin aut Fritschi, Felix B. verfasserin aut Enthalten in Remote sensing of environment Amsterdam [u.a.] : Elsevier Science, 1969 237 Online-Ressource (DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 1879-0704 nnns volume:237 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.03 Methoden und Techniken der Geowissenschaften 43.03 Methoden der Umweltforschung und des Umweltschutzes 74.41 Luftaufnahmen Photogrammetrie AR 237 |
allfields_unstemmed |
10.1016/j.rse.2019.111599 doi (DE-627)ELV003419118 (ELSEVIER)S0034-4257(19)30619-4 DE-627 ger DE-627 rda eng 050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Maimaitijiang, Maitiniyazi verfasserin aut Soybean yield prediction from UAV using multimodal data fusion and deep learning 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology facilitate cost-effective data collection through simultaneous multi-sensor/multimodal data collection at very high spatial and spectral resolutions. The objective of this study is to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral and thermal sensors to estimate soybean (Glycine max) grain yield within the framework of Deep Neural Network (DNN). RGB, multispectral, and thermal images were collected using a low-cost multi-sensory UAV from a test site in Columbia, Missouri, USA. Multimodal information, such as canopy spectral, structure, thermal and texture features, was extracted and combined to predict crop grain yield using Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), Support Vector Regression (SVR), input-level feature fusion based DNN (DNN-F1) and intermediate-level feature fusion based DNN (DNN-F2). The results can be summarized in three messages: (1) multimodal data fusion improves the yield prediction accuracy and is more adaptable to spatial variations; (2) DNN-based models improve yield prediction model accuracy: the highest accuracy was obtained by DNN-F2 with an R2 of 0.720 and a relative root mean square error (RMSE%) of 15.9%; (3) DNN-based models were less prone to saturation effects, and exhibited more adaptive performance in predicting grain yields across the Dwight, Pana and AG3432 soybean genotypes in our study. Furthermore, DNN-based models demonstrated consistent performance over space with less spatial dependency and variations. This study indicates that multimodal data fusion using low-cost UAV within a DNN framework can provide a relatively accurate and robust estimation of crop yield, and deliver valuable insight for high-throughput phenotyping and crop field management with high spatial precision. Remote sensing Yield prediction Multimodality Data fusion Deep learning Phenotyping Spatial autocorrelation Sagan, Vasit verfasserin (orcid)0000-0003-4375-2096 aut Sidike, Paheding verfasserin (orcid)0000-0003-4712-9672 aut Hartling, Sean verfasserin aut Esposito, Flavio verfasserin aut Fritschi, Felix B. verfasserin aut Enthalten in Remote sensing of environment Amsterdam [u.a.] : Elsevier Science, 1969 237 Online-Ressource (DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 1879-0704 nnns volume:237 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.03 Methoden und Techniken der Geowissenschaften 43.03 Methoden der Umweltforschung und des Umweltschutzes 74.41 Luftaufnahmen Photogrammetrie AR 237 |
allfieldsGer |
10.1016/j.rse.2019.111599 doi (DE-627)ELV003419118 (ELSEVIER)S0034-4257(19)30619-4 DE-627 ger DE-627 rda eng 050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Maimaitijiang, Maitiniyazi verfasserin aut Soybean yield prediction from UAV using multimodal data fusion and deep learning 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology facilitate cost-effective data collection through simultaneous multi-sensor/multimodal data collection at very high spatial and spectral resolutions. The objective of this study is to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral and thermal sensors to estimate soybean (Glycine max) grain yield within the framework of Deep Neural Network (DNN). RGB, multispectral, and thermal images were collected using a low-cost multi-sensory UAV from a test site in Columbia, Missouri, USA. Multimodal information, such as canopy spectral, structure, thermal and texture features, was extracted and combined to predict crop grain yield using Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), Support Vector Regression (SVR), input-level feature fusion based DNN (DNN-F1) and intermediate-level feature fusion based DNN (DNN-F2). The results can be summarized in three messages: (1) multimodal data fusion improves the yield prediction accuracy and is more adaptable to spatial variations; (2) DNN-based models improve yield prediction model accuracy: the highest accuracy was obtained by DNN-F2 with an R2 of 0.720 and a relative root mean square error (RMSE%) of 15.9%; (3) DNN-based models were less prone to saturation effects, and exhibited more adaptive performance in predicting grain yields across the Dwight, Pana and AG3432 soybean genotypes in our study. Furthermore, DNN-based models demonstrated consistent performance over space with less spatial dependency and variations. This study indicates that multimodal data fusion using low-cost UAV within a DNN framework can provide a relatively accurate and robust estimation of crop yield, and deliver valuable insight for high-throughput phenotyping and crop field management with high spatial precision. Remote sensing Yield prediction Multimodality Data fusion Deep learning Phenotyping Spatial autocorrelation Sagan, Vasit verfasserin (orcid)0000-0003-4375-2096 aut Sidike, Paheding verfasserin (orcid)0000-0003-4712-9672 aut Hartling, Sean verfasserin aut Esposito, Flavio verfasserin aut Fritschi, Felix B. verfasserin aut Enthalten in Remote sensing of environment Amsterdam [u.a.] : Elsevier Science, 1969 237 Online-Ressource (DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 1879-0704 nnns volume:237 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.03 Methoden und Techniken der Geowissenschaften 43.03 Methoden der Umweltforschung und des Umweltschutzes 74.41 Luftaufnahmen Photogrammetrie AR 237 |
allfieldsSound |
10.1016/j.rse.2019.111599 doi (DE-627)ELV003419118 (ELSEVIER)S0034-4257(19)30619-4 DE-627 ger DE-627 rda eng 050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Maimaitijiang, Maitiniyazi verfasserin aut Soybean yield prediction from UAV using multimodal data fusion and deep learning 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology facilitate cost-effective data collection through simultaneous multi-sensor/multimodal data collection at very high spatial and spectral resolutions. The objective of this study is to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral and thermal sensors to estimate soybean (Glycine max) grain yield within the framework of Deep Neural Network (DNN). RGB, multispectral, and thermal images were collected using a low-cost multi-sensory UAV from a test site in Columbia, Missouri, USA. Multimodal information, such as canopy spectral, structure, thermal and texture features, was extracted and combined to predict crop grain yield using Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), Support Vector Regression (SVR), input-level feature fusion based DNN (DNN-F1) and intermediate-level feature fusion based DNN (DNN-F2). The results can be summarized in three messages: (1) multimodal data fusion improves the yield prediction accuracy and is more adaptable to spatial variations; (2) DNN-based models improve yield prediction model accuracy: the highest accuracy was obtained by DNN-F2 with an R2 of 0.720 and a relative root mean square error (RMSE%) of 15.9%; (3) DNN-based models were less prone to saturation effects, and exhibited more adaptive performance in predicting grain yields across the Dwight, Pana and AG3432 soybean genotypes in our study. Furthermore, DNN-based models demonstrated consistent performance over space with less spatial dependency and variations. This study indicates that multimodal data fusion using low-cost UAV within a DNN framework can provide a relatively accurate and robust estimation of crop yield, and deliver valuable insight for high-throughput phenotyping and crop field management with high spatial precision. Remote sensing Yield prediction Multimodality Data fusion Deep learning Phenotyping Spatial autocorrelation Sagan, Vasit verfasserin (orcid)0000-0003-4375-2096 aut Sidike, Paheding verfasserin (orcid)0000-0003-4712-9672 aut Hartling, Sean verfasserin aut Esposito, Flavio verfasserin aut Fritschi, Felix B. verfasserin aut Enthalten in Remote sensing of environment Amsterdam [u.a.] : Elsevier Science, 1969 237 Online-Ressource (DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 1879-0704 nnns volume:237 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.03 Methoden und Techniken der Geowissenschaften 43.03 Methoden der Umweltforschung und des Umweltschutzes 74.41 Luftaufnahmen Photogrammetrie AR 237 |
language |
English |
source |
Enthalten in Remote sensing of environment 237 volume:237 |
sourceStr |
Enthalten in Remote sensing of environment 237 volume:237 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Geowissenschaften Methoden der Umweltforschung und des Umweltschutzes Luftaufnahmen Photogrammetrie |
institution |
findex.gbv.de |
topic_facet |
Remote sensing Yield prediction Multimodality Data fusion Deep learning Phenotyping Spatial autocorrelation |
dewey-raw |
050 |
isfreeaccess_bool |
false |
container_title |
Remote sensing of environment |
authorswithroles_txt_mv |
Maimaitijiang, Maitiniyazi @@aut@@ Sagan, Vasit @@aut@@ Sidike, Paheding @@aut@@ Hartling, Sean @@aut@@ Esposito, Flavio @@aut@@ Fritschi, Felix B. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
306591324 |
dewey-sort |
250 |
id |
ELV003419118 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003419118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132320.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rse.2019.111599</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003419118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0034-4257(19)30619-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maimaitijiang, Maitiniyazi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soybean yield prediction from UAV using multimodal data fusion and deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology facilitate cost-effective data collection through simultaneous multi-sensor/multimodal data collection at very high spatial and spectral resolutions. The objective of this study is to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral and thermal sensors to estimate soybean (Glycine max) grain yield within the framework of Deep Neural Network (DNN). RGB, multispectral, and thermal images were collected using a low-cost multi-sensory UAV from a test site in Columbia, Missouri, USA. Multimodal information, such as canopy spectral, structure, thermal and texture features, was extracted and combined to predict crop grain yield using Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), Support Vector Regression (SVR), input-level feature fusion based DNN (DNN-F1) and intermediate-level feature fusion based DNN (DNN-F2). The results can be summarized in three messages: (1) multimodal data fusion improves the yield prediction accuracy and is more adaptable to spatial variations; (2) DNN-based models improve yield prediction model accuracy: the highest accuracy was obtained by DNN-F2 with an R2 of 0.720 and a relative root mean square error (RMSE%) of 15.9%; (3) DNN-based models were less prone to saturation effects, and exhibited more adaptive performance in predicting grain yields across the Dwight, Pana and AG3432 soybean genotypes in our study. Furthermore, DNN-based models demonstrated consistent performance over space with less spatial dependency and variations. This study indicates that multimodal data fusion using low-cost UAV within a DNN framework can provide a relatively accurate and robust estimation of crop yield, and deliver valuable insight for high-throughput phenotyping and crop field management with high spatial precision.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multimodality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phenotyping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial autocorrelation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sagan, Vasit</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4375-2096</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sidike, Paheding</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4712-9672</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hartling, Sean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Esposito, Flavio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fritschi, Felix B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Remote sensing of environment</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1969</subfield><subfield code="g">237</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591324</subfield><subfield code="w">(DE-600)1498713-2</subfield><subfield code="w">(DE-576)098330268</subfield><subfield code="x">1879-0704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:237</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.03</subfield><subfield code="j">Methoden und Techniken der Geowissenschaften</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.03</subfield><subfield code="j">Methoden der Umweltforschung und des Umweltschutzes</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">237</subfield></datafield></record></collection>
|
author |
Maimaitijiang, Maitiniyazi |
spellingShingle |
Maimaitijiang, Maitiniyazi ddc 050 bkl 38.03 bkl 43.03 bkl 74.41 misc Remote sensing misc Yield prediction misc Multimodality misc Data fusion misc Deep learning misc Phenotyping misc Spatial autocorrelation Soybean yield prediction from UAV using multimodal data fusion and deep learning |
authorStr |
Maimaitijiang, Maitiniyazi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306591324 |
format |
electronic Article |
dewey-ones |
050 - General serial publications 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0704 |
topic_title |
050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Soybean yield prediction from UAV using multimodal data fusion and deep learning Remote sensing Yield prediction Multimodality Data fusion Deep learning Phenotyping Spatial autocorrelation |
topic |
ddc 050 bkl 38.03 bkl 43.03 bkl 74.41 misc Remote sensing misc Yield prediction misc Multimodality misc Data fusion misc Deep learning misc Phenotyping misc Spatial autocorrelation |
topic_unstemmed |
ddc 050 bkl 38.03 bkl 43.03 bkl 74.41 misc Remote sensing misc Yield prediction misc Multimodality misc Data fusion misc Deep learning misc Phenotyping misc Spatial autocorrelation |
topic_browse |
ddc 050 bkl 38.03 bkl 43.03 bkl 74.41 misc Remote sensing misc Yield prediction misc Multimodality misc Data fusion misc Deep learning misc Phenotyping misc Spatial autocorrelation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote sensing of environment |
hierarchy_parent_id |
306591324 |
dewey-tens |
050 - Magazines, journals & serials 550 - Earth sciences & geology |
hierarchy_top_title |
Remote sensing of environment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 |
title |
Soybean yield prediction from UAV using multimodal data fusion and deep learning |
ctrlnum |
(DE-627)ELV003419118 (ELSEVIER)S0034-4257(19)30619-4 |
title_full |
Soybean yield prediction from UAV using multimodal data fusion and deep learning |
author_sort |
Maimaitijiang, Maitiniyazi |
journal |
Remote sensing of environment |
journalStr |
Remote sensing of environment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Maimaitijiang, Maitiniyazi Sagan, Vasit Sidike, Paheding Hartling, Sean Esposito, Flavio Fritschi, Felix B. |
container_volume |
237 |
class |
050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Maimaitijiang, Maitiniyazi |
doi_str_mv |
10.1016/j.rse.2019.111599 |
normlink |
(ORCID)0000-0003-4375-2096 (ORCID)0000-0003-4712-9672 |
normlink_prefix_str_mv |
(orcid)0000-0003-4375-2096 (orcid)0000-0003-4712-9672 |
dewey-full |
050 550 |
author2-role |
verfasserin |
title_sort |
soybean yield prediction from uav using multimodal data fusion and deep learning |
title_auth |
Soybean yield prediction from UAV using multimodal data fusion and deep learning |
abstract |
Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology facilitate cost-effective data collection through simultaneous multi-sensor/multimodal data collection at very high spatial and spectral resolutions. The objective of this study is to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral and thermal sensors to estimate soybean (Glycine max) grain yield within the framework of Deep Neural Network (DNN). RGB, multispectral, and thermal images were collected using a low-cost multi-sensory UAV from a test site in Columbia, Missouri, USA. Multimodal information, such as canopy spectral, structure, thermal and texture features, was extracted and combined to predict crop grain yield using Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), Support Vector Regression (SVR), input-level feature fusion based DNN (DNN-F1) and intermediate-level feature fusion based DNN (DNN-F2). The results can be summarized in three messages: (1) multimodal data fusion improves the yield prediction accuracy and is more adaptable to spatial variations; (2) DNN-based models improve yield prediction model accuracy: the highest accuracy was obtained by DNN-F2 with an R2 of 0.720 and a relative root mean square error (RMSE%) of 15.9%; (3) DNN-based models were less prone to saturation effects, and exhibited more adaptive performance in predicting grain yields across the Dwight, Pana and AG3432 soybean genotypes in our study. Furthermore, DNN-based models demonstrated consistent performance over space with less spatial dependency and variations. This study indicates that multimodal data fusion using low-cost UAV within a DNN framework can provide a relatively accurate and robust estimation of crop yield, and deliver valuable insight for high-throughput phenotyping and crop field management with high spatial precision. |
abstractGer |
Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology facilitate cost-effective data collection through simultaneous multi-sensor/multimodal data collection at very high spatial and spectral resolutions. The objective of this study is to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral and thermal sensors to estimate soybean (Glycine max) grain yield within the framework of Deep Neural Network (DNN). RGB, multispectral, and thermal images were collected using a low-cost multi-sensory UAV from a test site in Columbia, Missouri, USA. Multimodal information, such as canopy spectral, structure, thermal and texture features, was extracted and combined to predict crop grain yield using Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), Support Vector Regression (SVR), input-level feature fusion based DNN (DNN-F1) and intermediate-level feature fusion based DNN (DNN-F2). The results can be summarized in three messages: (1) multimodal data fusion improves the yield prediction accuracy and is more adaptable to spatial variations; (2) DNN-based models improve yield prediction model accuracy: the highest accuracy was obtained by DNN-F2 with an R2 of 0.720 and a relative root mean square error (RMSE%) of 15.9%; (3) DNN-based models were less prone to saturation effects, and exhibited more adaptive performance in predicting grain yields across the Dwight, Pana and AG3432 soybean genotypes in our study. Furthermore, DNN-based models demonstrated consistent performance over space with less spatial dependency and variations. This study indicates that multimodal data fusion using low-cost UAV within a DNN framework can provide a relatively accurate and robust estimation of crop yield, and deliver valuable insight for high-throughput phenotyping and crop field management with high spatial precision. |
abstract_unstemmed |
Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology facilitate cost-effective data collection through simultaneous multi-sensor/multimodal data collection at very high spatial and spectral resolutions. The objective of this study is to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral and thermal sensors to estimate soybean (Glycine max) grain yield within the framework of Deep Neural Network (DNN). RGB, multispectral, and thermal images were collected using a low-cost multi-sensory UAV from a test site in Columbia, Missouri, USA. Multimodal information, such as canopy spectral, structure, thermal and texture features, was extracted and combined to predict crop grain yield using Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), Support Vector Regression (SVR), input-level feature fusion based DNN (DNN-F1) and intermediate-level feature fusion based DNN (DNN-F2). The results can be summarized in three messages: (1) multimodal data fusion improves the yield prediction accuracy and is more adaptable to spatial variations; (2) DNN-based models improve yield prediction model accuracy: the highest accuracy was obtained by DNN-F2 with an R2 of 0.720 and a relative root mean square error (RMSE%) of 15.9%; (3) DNN-based models were less prone to saturation effects, and exhibited more adaptive performance in predicting grain yields across the Dwight, Pana and AG3432 soybean genotypes in our study. Furthermore, DNN-based models demonstrated consistent performance over space with less spatial dependency and variations. This study indicates that multimodal data fusion using low-cost UAV within a DNN framework can provide a relatively accurate and robust estimation of crop yield, and deliver valuable insight for high-throughput phenotyping and crop field management with high spatial precision. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Soybean yield prediction from UAV using multimodal data fusion and deep learning |
remote_bool |
true |
author2 |
Sagan, Vasit Sidike, Paheding Hartling, Sean Esposito, Flavio Fritschi, Felix B. |
author2Str |
Sagan, Vasit Sidike, Paheding Hartling, Sean Esposito, Flavio Fritschi, Felix B. |
ppnlink |
306591324 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.rse.2019.111599 |
up_date |
2024-07-06T19:33:14.006Z |
_version_ |
1803859414490284032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003419118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132320.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rse.2019.111599</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003419118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0034-4257(19)30619-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maimaitijiang, Maitiniyazi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soybean yield prediction from UAV using multimodal data fusion and deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Preharvest crop yield prediction is critical for grain policy making and food security. Early estimation of yield at field or plot scale also contributes to high-throughput plant phenotyping and precision agriculture. New developments in Unmanned Aerial Vehicle (UAV) platforms and sensor technology facilitate cost-effective data collection through simultaneous multi-sensor/multimodal data collection at very high spatial and spectral resolutions. The objective of this study is to evaluate the power of UAV-based multimodal data fusion using RGB, multispectral and thermal sensors to estimate soybean (Glycine max) grain yield within the framework of Deep Neural Network (DNN). RGB, multispectral, and thermal images were collected using a low-cost multi-sensory UAV from a test site in Columbia, Missouri, USA. Multimodal information, such as canopy spectral, structure, thermal and texture features, was extracted and combined to predict crop grain yield using Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), Support Vector Regression (SVR), input-level feature fusion based DNN (DNN-F1) and intermediate-level feature fusion based DNN (DNN-F2). The results can be summarized in three messages: (1) multimodal data fusion improves the yield prediction accuracy and is more adaptable to spatial variations; (2) DNN-based models improve yield prediction model accuracy: the highest accuracy was obtained by DNN-F2 with an R2 of 0.720 and a relative root mean square error (RMSE%) of 15.9%; (3) DNN-based models were less prone to saturation effects, and exhibited more adaptive performance in predicting grain yields across the Dwight, Pana and AG3432 soybean genotypes in our study. Furthermore, DNN-based models demonstrated consistent performance over space with less spatial dependency and variations. This study indicates that multimodal data fusion using low-cost UAV within a DNN framework can provide a relatively accurate and robust estimation of crop yield, and deliver valuable insight for high-throughput phenotyping and crop field management with high spatial precision.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multimodality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phenotyping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial autocorrelation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sagan, Vasit</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4375-2096</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sidike, Paheding</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4712-9672</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hartling, Sean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Esposito, Flavio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fritschi, Felix B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Remote sensing of environment</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1969</subfield><subfield code="g">237</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591324</subfield><subfield code="w">(DE-600)1498713-2</subfield><subfield code="w">(DE-576)098330268</subfield><subfield code="x">1879-0704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:237</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.03</subfield><subfield code="j">Methoden und Techniken der Geowissenschaften</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.03</subfield><subfield code="j">Methoden der Umweltforschung und des Umweltschutzes</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">237</subfield></datafield></record></collection>
|
score |
7.402323 |