Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition
The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made t...
Ausführliche Beschreibung
Autor*in: |
Tamuli, Bhaskar Ranjan [verfasserIn] Saikia, Saranga Sekhar [verfasserIn] Nath, Sujit [verfasserIn] Bhanja, Dipankar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Solar energy - Amsterdam [u.a.] : Elsevier Science, 1957, 196, Seite 107-124 |
---|---|
Übergeordnetes Werk: |
volume:196 ; pages:107-124 |
DOI / URN: |
10.1016/j.solener.2019.11.097 |
---|
Katalog-ID: |
ELV003446719 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003446719 | ||
003 | DE-627 | ||
005 | 20230524143229.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.solener.2019.11.097 |2 doi | |
035 | |a (DE-627)ELV003446719 | ||
035 | |a (ELSEVIER)S0038-092X(19)31195-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Tamuli, Bhaskar Ranjan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made to simulate a practical condition for a solar heating system by varying solar radiation throughout the day as well as months of a year. Hourly solar insolation data are collected from web-based resource PVGIS for the region of Silchar, a north-eastern location in India. The results revealed that the temperature profile of the working fluid in the Evacuated Tube Collector is non-linear and the rise in temperature is more in the months of November-March than April-October. The outlet temperature is highest for the month of February and lowest in June which signifies that the system can be practically applicable in this region for water heating purpose, as it produces a higher temperature in winter days. Also, the daily analysis shows the efficiency of the system is very low during the morning and evening hours. Moreover, there is a possibility of obtaining a two-phase flow in the outer pipe under certain circumstances and this production of vapour is accompanied by a reduction in efficiency. The analysis shows that with radiation being fixed, inlet temperature and mass flow rate are the most dominant factors for two-phase flow. Present model also suggests an optimum mass flow rate beyond which the flow becomes two-phase and not desirable. | ||
650 | 4 | |a Evacuated tube solar collector | |
650 | 4 | |a Collector efficiency | |
650 | 4 | |a Two phase flow | |
700 | 1 | |a Saikia, Saranga Sekhar |e verfasserin |4 aut | |
700 | 1 | |a Nath, Sujit |e verfasserin |0 (orcid)0000-0002-4896-2861 |4 aut | |
700 | 1 | |a Bhanja, Dipankar |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Solar energy |d Amsterdam [u.a.] : Elsevier Science, 1957 |g 196, Seite 107-124 |h Online-Ressource |w (DE-627)320525597 |w (DE-600)2015126-3 |w (DE-576)096806648 |x 1471-1257 |7 nnns |
773 | 1 | 8 | |g volume:196 |g pages:107-124 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |
951 | |a AR | ||
952 | |d 196 |h 107-124 |
author_variant |
b r t br brt s s s ss sss s n sn d b db |
---|---|
matchkey_str |
article:14711257:2019----::hrapromnenlssfcailvcaetbcletrihigentohsfocnieainn |
hierarchy_sort_str |
2019 |
bklnumber |
52.56 |
publishDate |
2019 |
allfields |
10.1016/j.solener.2019.11.097 doi (DE-627)ELV003446719 (ELSEVIER)S0038-092X(19)31195-8 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Tamuli, Bhaskar Ranjan verfasserin aut Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made to simulate a practical condition for a solar heating system by varying solar radiation throughout the day as well as months of a year. Hourly solar insolation data are collected from web-based resource PVGIS for the region of Silchar, a north-eastern location in India. The results revealed that the temperature profile of the working fluid in the Evacuated Tube Collector is non-linear and the rise in temperature is more in the months of November-March than April-October. The outlet temperature is highest for the month of February and lowest in June which signifies that the system can be practically applicable in this region for water heating purpose, as it produces a higher temperature in winter days. Also, the daily analysis shows the efficiency of the system is very low during the morning and evening hours. Moreover, there is a possibility of obtaining a two-phase flow in the outer pipe under certain circumstances and this production of vapour is accompanied by a reduction in efficiency. The analysis shows that with radiation being fixed, inlet temperature and mass flow rate are the most dominant factors for two-phase flow. Present model also suggests an optimum mass flow rate beyond which the flow becomes two-phase and not desirable. Evacuated tube solar collector Collector efficiency Two phase flow Saikia, Saranga Sekhar verfasserin aut Nath, Sujit verfasserin (orcid)0000-0002-4896-2861 aut Bhanja, Dipankar verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 196, Seite 107-124 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:196 pages:107-124 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 196 107-124 |
spelling |
10.1016/j.solener.2019.11.097 doi (DE-627)ELV003446719 (ELSEVIER)S0038-092X(19)31195-8 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Tamuli, Bhaskar Ranjan verfasserin aut Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made to simulate a practical condition for a solar heating system by varying solar radiation throughout the day as well as months of a year. Hourly solar insolation data are collected from web-based resource PVGIS for the region of Silchar, a north-eastern location in India. The results revealed that the temperature profile of the working fluid in the Evacuated Tube Collector is non-linear and the rise in temperature is more in the months of November-March than April-October. The outlet temperature is highest for the month of February and lowest in June which signifies that the system can be practically applicable in this region for water heating purpose, as it produces a higher temperature in winter days. Also, the daily analysis shows the efficiency of the system is very low during the morning and evening hours. Moreover, there is a possibility of obtaining a two-phase flow in the outer pipe under certain circumstances and this production of vapour is accompanied by a reduction in efficiency. The analysis shows that with radiation being fixed, inlet temperature and mass flow rate are the most dominant factors for two-phase flow. Present model also suggests an optimum mass flow rate beyond which the flow becomes two-phase and not desirable. Evacuated tube solar collector Collector efficiency Two phase flow Saikia, Saranga Sekhar verfasserin aut Nath, Sujit verfasserin (orcid)0000-0002-4896-2861 aut Bhanja, Dipankar verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 196, Seite 107-124 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:196 pages:107-124 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 196 107-124 |
allfields_unstemmed |
10.1016/j.solener.2019.11.097 doi (DE-627)ELV003446719 (ELSEVIER)S0038-092X(19)31195-8 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Tamuli, Bhaskar Ranjan verfasserin aut Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made to simulate a practical condition for a solar heating system by varying solar radiation throughout the day as well as months of a year. Hourly solar insolation data are collected from web-based resource PVGIS for the region of Silchar, a north-eastern location in India. The results revealed that the temperature profile of the working fluid in the Evacuated Tube Collector is non-linear and the rise in temperature is more in the months of November-March than April-October. The outlet temperature is highest for the month of February and lowest in June which signifies that the system can be practically applicable in this region for water heating purpose, as it produces a higher temperature in winter days. Also, the daily analysis shows the efficiency of the system is very low during the morning and evening hours. Moreover, there is a possibility of obtaining a two-phase flow in the outer pipe under certain circumstances and this production of vapour is accompanied by a reduction in efficiency. The analysis shows that with radiation being fixed, inlet temperature and mass flow rate are the most dominant factors for two-phase flow. Present model also suggests an optimum mass flow rate beyond which the flow becomes two-phase and not desirable. Evacuated tube solar collector Collector efficiency Two phase flow Saikia, Saranga Sekhar verfasserin aut Nath, Sujit verfasserin (orcid)0000-0002-4896-2861 aut Bhanja, Dipankar verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 196, Seite 107-124 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:196 pages:107-124 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 196 107-124 |
allfieldsGer |
10.1016/j.solener.2019.11.097 doi (DE-627)ELV003446719 (ELSEVIER)S0038-092X(19)31195-8 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Tamuli, Bhaskar Ranjan verfasserin aut Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made to simulate a practical condition for a solar heating system by varying solar radiation throughout the day as well as months of a year. Hourly solar insolation data are collected from web-based resource PVGIS for the region of Silchar, a north-eastern location in India. The results revealed that the temperature profile of the working fluid in the Evacuated Tube Collector is non-linear and the rise in temperature is more in the months of November-March than April-October. The outlet temperature is highest for the month of February and lowest in June which signifies that the system can be practically applicable in this region for water heating purpose, as it produces a higher temperature in winter days. Also, the daily analysis shows the efficiency of the system is very low during the morning and evening hours. Moreover, there is a possibility of obtaining a two-phase flow in the outer pipe under certain circumstances and this production of vapour is accompanied by a reduction in efficiency. The analysis shows that with radiation being fixed, inlet temperature and mass flow rate are the most dominant factors for two-phase flow. Present model also suggests an optimum mass flow rate beyond which the flow becomes two-phase and not desirable. Evacuated tube solar collector Collector efficiency Two phase flow Saikia, Saranga Sekhar verfasserin aut Nath, Sujit verfasserin (orcid)0000-0002-4896-2861 aut Bhanja, Dipankar verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 196, Seite 107-124 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:196 pages:107-124 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 196 107-124 |
allfieldsSound |
10.1016/j.solener.2019.11.097 doi (DE-627)ELV003446719 (ELSEVIER)S0038-092X(19)31195-8 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Tamuli, Bhaskar Ranjan verfasserin aut Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made to simulate a practical condition for a solar heating system by varying solar radiation throughout the day as well as months of a year. Hourly solar insolation data are collected from web-based resource PVGIS for the region of Silchar, a north-eastern location in India. The results revealed that the temperature profile of the working fluid in the Evacuated Tube Collector is non-linear and the rise in temperature is more in the months of November-March than April-October. The outlet temperature is highest for the month of February and lowest in June which signifies that the system can be practically applicable in this region for water heating purpose, as it produces a higher temperature in winter days. Also, the daily analysis shows the efficiency of the system is very low during the morning and evening hours. Moreover, there is a possibility of obtaining a two-phase flow in the outer pipe under certain circumstances and this production of vapour is accompanied by a reduction in efficiency. The analysis shows that with radiation being fixed, inlet temperature and mass flow rate are the most dominant factors for two-phase flow. Present model also suggests an optimum mass flow rate beyond which the flow becomes two-phase and not desirable. Evacuated tube solar collector Collector efficiency Two phase flow Saikia, Saranga Sekhar verfasserin aut Nath, Sujit verfasserin (orcid)0000-0002-4896-2861 aut Bhanja, Dipankar verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 196, Seite 107-124 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:196 pages:107-124 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 196 107-124 |
language |
English |
source |
Enthalten in Solar energy 196, Seite 107-124 volume:196 pages:107-124 |
sourceStr |
Enthalten in Solar energy 196, Seite 107-124 volume:196 pages:107-124 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Evacuated tube solar collector Collector efficiency Two phase flow |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Solar energy |
authorswithroles_txt_mv |
Tamuli, Bhaskar Ranjan @@aut@@ Saikia, Saranga Sekhar @@aut@@ Nath, Sujit @@aut@@ Bhanja, Dipankar @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320525597 |
dewey-sort |
3530 |
id |
ELV003446719 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003446719</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143229.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solener.2019.11.097</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003446719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-092X(19)31195-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tamuli, Bhaskar Ranjan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made to simulate a practical condition for a solar heating system by varying solar radiation throughout the day as well as months of a year. Hourly solar insolation data are collected from web-based resource PVGIS for the region of Silchar, a north-eastern location in India. The results revealed that the temperature profile of the working fluid in the Evacuated Tube Collector is non-linear and the rise in temperature is more in the months of November-March than April-October. The outlet temperature is highest for the month of February and lowest in June which signifies that the system can be practically applicable in this region for water heating purpose, as it produces a higher temperature in winter days. Also, the daily analysis shows the efficiency of the system is very low during the morning and evening hours. Moreover, there is a possibility of obtaining a two-phase flow in the outer pipe under certain circumstances and this production of vapour is accompanied by a reduction in efficiency. The analysis shows that with radiation being fixed, inlet temperature and mass flow rate are the most dominant factors for two-phase flow. Present model also suggests an optimum mass flow rate beyond which the flow becomes two-phase and not desirable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evacuated tube solar collector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collector efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Two phase flow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saikia, Saranga Sekhar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nath, Sujit</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4896-2861</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhanja, Dipankar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1957</subfield><subfield code="g">196, Seite 107-124</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320525597</subfield><subfield code="w">(DE-600)2015126-3</subfield><subfield code="w">(DE-576)096806648</subfield><subfield code="x">1471-1257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:196</subfield><subfield code="g">pages:107-124</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">196</subfield><subfield code="h">107-124</subfield></datafield></record></collection>
|
author |
Tamuli, Bhaskar Ranjan |
spellingShingle |
Tamuli, Bhaskar Ranjan ddc 530 bkl 52.56 misc Evacuated tube solar collector misc Collector efficiency misc Two phase flow Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition |
authorStr |
Tamuli, Bhaskar Ranjan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320525597 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-1257 |
topic_title |
530 DE-600 52.56 bkl Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition Evacuated tube solar collector Collector efficiency Two phase flow |
topic |
ddc 530 bkl 52.56 misc Evacuated tube solar collector misc Collector efficiency misc Two phase flow |
topic_unstemmed |
ddc 530 bkl 52.56 misc Evacuated tube solar collector misc Collector efficiency misc Two phase flow |
topic_browse |
ddc 530 bkl 52.56 misc Evacuated tube solar collector misc Collector efficiency misc Two phase flow |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Solar energy |
hierarchy_parent_id |
320525597 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Solar energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 |
title |
Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition |
ctrlnum |
(DE-627)ELV003446719 (ELSEVIER)S0038-092X(19)31195-8 |
title_full |
Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition |
author_sort |
Tamuli, Bhaskar Ranjan |
journal |
Solar energy |
journalStr |
Solar energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
107 |
author_browse |
Tamuli, Bhaskar Ranjan Saikia, Saranga Sekhar Nath, Sujit Bhanja, Dipankar |
container_volume |
196 |
class |
530 DE-600 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tamuli, Bhaskar Ranjan |
doi_str_mv |
10.1016/j.solener.2019.11.097 |
normlink |
(ORCID)0000-0002-4896-2861 |
normlink_prefix_str_mv |
(orcid)0000-0002-4896-2861 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under north-eastern india climatic condition |
title_auth |
Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition |
abstract |
The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made to simulate a practical condition for a solar heating system by varying solar radiation throughout the day as well as months of a year. Hourly solar insolation data are collected from web-based resource PVGIS for the region of Silchar, a north-eastern location in India. The results revealed that the temperature profile of the working fluid in the Evacuated Tube Collector is non-linear and the rise in temperature is more in the months of November-March than April-October. The outlet temperature is highest for the month of February and lowest in June which signifies that the system can be practically applicable in this region for water heating purpose, as it produces a higher temperature in winter days. Also, the daily analysis shows the efficiency of the system is very low during the morning and evening hours. Moreover, there is a possibility of obtaining a two-phase flow in the outer pipe under certain circumstances and this production of vapour is accompanied by a reduction in efficiency. The analysis shows that with radiation being fixed, inlet temperature and mass flow rate are the most dominant factors for two-phase flow. Present model also suggests an optimum mass flow rate beyond which the flow becomes two-phase and not desirable. |
abstractGer |
The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made to simulate a practical condition for a solar heating system by varying solar radiation throughout the day as well as months of a year. Hourly solar insolation data are collected from web-based resource PVGIS for the region of Silchar, a north-eastern location in India. The results revealed that the temperature profile of the working fluid in the Evacuated Tube Collector is non-linear and the rise in temperature is more in the months of November-March than April-October. The outlet temperature is highest for the month of February and lowest in June which signifies that the system can be practically applicable in this region for water heating purpose, as it produces a higher temperature in winter days. Also, the daily analysis shows the efficiency of the system is very low during the morning and evening hours. Moreover, there is a possibility of obtaining a two-phase flow in the outer pipe under certain circumstances and this production of vapour is accompanied by a reduction in efficiency. The analysis shows that with radiation being fixed, inlet temperature and mass flow rate are the most dominant factors for two-phase flow. Present model also suggests an optimum mass flow rate beyond which the flow becomes two-phase and not desirable. |
abstract_unstemmed |
The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made to simulate a practical condition for a solar heating system by varying solar radiation throughout the day as well as months of a year. Hourly solar insolation data are collected from web-based resource PVGIS for the region of Silchar, a north-eastern location in India. The results revealed that the temperature profile of the working fluid in the Evacuated Tube Collector is non-linear and the rise in temperature is more in the months of November-March than April-October. The outlet temperature is highest for the month of February and lowest in June which signifies that the system can be practically applicable in this region for water heating purpose, as it produces a higher temperature in winter days. Also, the daily analysis shows the efficiency of the system is very low during the morning and evening hours. Moreover, there is a possibility of obtaining a two-phase flow in the outer pipe under certain circumstances and this production of vapour is accompanied by a reduction in efficiency. The analysis shows that with radiation being fixed, inlet temperature and mass flow rate are the most dominant factors for two-phase flow. Present model also suggests an optimum mass flow rate beyond which the flow becomes two-phase and not desirable. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition |
remote_bool |
true |
author2 |
Saikia, Saranga Sekhar Nath, Sujit Bhanja, Dipankar |
author2Str |
Saikia, Saranga Sekhar Nath, Sujit Bhanja, Dipankar |
ppnlink |
320525597 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.solener.2019.11.097 |
up_date |
2024-07-06T19:38:59.799Z |
_version_ |
1803859777080524800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003446719</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143229.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solener.2019.11.097</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003446719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-092X(19)31195-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tamuli, Bhaskar Ranjan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal performance analysis of a co-axial evacuated tube collector with single and two-phase flow consideration under North-eastern India climatic condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The standard condition for evaluation of solar heating system considers solar insolation of 1000 W/m2 which provides a good estimation of the performance of the system, but not able to predict a realistic situation due to the fluctuating behaviour of solar insolation. Therefore, an attempt is made to simulate a practical condition for a solar heating system by varying solar radiation throughout the day as well as months of a year. Hourly solar insolation data are collected from web-based resource PVGIS for the region of Silchar, a north-eastern location in India. The results revealed that the temperature profile of the working fluid in the Evacuated Tube Collector is non-linear and the rise in temperature is more in the months of November-March than April-October. The outlet temperature is highest for the month of February and lowest in June which signifies that the system can be practically applicable in this region for water heating purpose, as it produces a higher temperature in winter days. Also, the daily analysis shows the efficiency of the system is very low during the morning and evening hours. Moreover, there is a possibility of obtaining a two-phase flow in the outer pipe under certain circumstances and this production of vapour is accompanied by a reduction in efficiency. The analysis shows that with radiation being fixed, inlet temperature and mass flow rate are the most dominant factors for two-phase flow. Present model also suggests an optimum mass flow rate beyond which the flow becomes two-phase and not desirable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evacuated tube solar collector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collector efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Two phase flow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saikia, Saranga Sekhar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nath, Sujit</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4896-2861</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhanja, Dipankar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1957</subfield><subfield code="g">196, Seite 107-124</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320525597</subfield><subfield code="w">(DE-600)2015126-3</subfield><subfield code="w">(DE-576)096806648</subfield><subfield code="x">1471-1257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:196</subfield><subfield code="g">pages:107-124</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">196</subfield><subfield code="h">107-124</subfield></datafield></record></collection>
|
score |
7.401726 |