Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis
Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative...
Ausführliche Beschreibung
Autor*in: |
Zhang, Shuai [verfasserIn] Yu, Zhiguo [verfasserIn] Lin, Junjie [verfasserIn] Zhu, Biao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Geoderma - Amsterdam [u.a.] : Elsevier Science, 1967, 361 |
---|---|
Übergeordnetes Werk: |
volume:361 |
DOI / URN: |
10.1016/j.geoderma.2019.114069 |
---|
Katalog-ID: |
ELV003471802 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003471802 | ||
003 | DE-627 | ||
005 | 20230524145129.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.geoderma.2019.114069 |2 doi | |
035 | |a (DE-627)ELV003471802 | ||
035 | |a (ELSEVIER)S0016-7061(19)31383-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 910 |q DE-600 |
084 | |a 38.60 |2 bkl | ||
100 | 1 | |a Zhang, Shuai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative soil respiration (CSR), their results are often contradictory, which offers us an opportunity to explore potential influencing factors and variability among studies. Using a meta-analysis including 524 observations from studies across different ecosystems and soil types, we investigated the responses of CSR to DWC. Our results indicated that DWC led to 72% stimulation of CSR compared with lower constant-moisture control (LC), 25% inhibition compared with upper constant-moisture control (UC), but minimal difference with mean constant-moisture control (MC), respectively. The meta-regression analysis showed that the DWC effect on CSR depended on mean annual precipitation, soil properties (clay content, C/N ratio, TN, pH), and the duration of drying in the DWC treatment. In addition, the effect size of CSR relative to UC was positively correlated with the number of DWC, suggesting that the slower-cycling soil carbon may be more vulnerable to DWC than the faster-cycling soil carbon and the “physical mechanism” may play a role in substrate release and CO2 emission after multiple DWC. Overall, our study provided a comprehensive analysis of the effects of DWC on CSR and showed that frequent drying-rewetting cycles induced by climate change might stimulate the loss of soil carbon to the atmosphere. Moreover, the similar CSR between DWC and MC (which have the same mean soil moisture content) suggests that the CO2 pulse after rewetting may be compensated by the low CO2 emission during the drying phase. Further research is needed to explore the responses of SOC pools with different turnover times to DWC and to investigate the DWC effects on soil respiration by in situ experiments and long-term studies. | ||
650 | 4 | |a Drying-rewetting | |
650 | 4 | |a CO | |
650 | 4 | |a Soil organic matter | |
650 | 4 | |a Soil carbon pool | |
650 | 4 | |a Soil respiration | |
700 | 1 | |a Yu, Zhiguo |e verfasserin |4 aut | |
700 | 1 | |a Lin, Junjie |e verfasserin |4 aut | |
700 | 1 | |a Zhu, Biao |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geoderma |d Amsterdam [u.a.] : Elsevier Science, 1967 |g 361 |h Online-Ressource |w (DE-627)320414493 |w (DE-600)2001729-7 |w (DE-576)099603853 |x 1872-6259 |7 nnns |
773 | 1 | 8 | |g volume:361 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.60 |j Bodenkunde: Allgemeines |x Geowissenschaften |
951 | |a AR | ||
952 | |d 361 |
author_variant |
s z sz z y zy j l jl b z bz |
---|---|
matchkey_str |
article:18726259:2019----::epneosicrodcmoiinorigeetn |
hierarchy_sort_str |
2019 |
bklnumber |
38.60 |
publishDate |
2019 |
allfields |
10.1016/j.geoderma.2019.114069 doi (DE-627)ELV003471802 (ELSEVIER)S0016-7061(19)31383-7 DE-627 ger DE-627 rda eng 550 910 DE-600 38.60 bkl Zhang, Shuai verfasserin aut Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative soil respiration (CSR), their results are often contradictory, which offers us an opportunity to explore potential influencing factors and variability among studies. Using a meta-analysis including 524 observations from studies across different ecosystems and soil types, we investigated the responses of CSR to DWC. Our results indicated that DWC led to 72% stimulation of CSR compared with lower constant-moisture control (LC), 25% inhibition compared with upper constant-moisture control (UC), but minimal difference with mean constant-moisture control (MC), respectively. The meta-regression analysis showed that the DWC effect on CSR depended on mean annual precipitation, soil properties (clay content, C/N ratio, TN, pH), and the duration of drying in the DWC treatment. In addition, the effect size of CSR relative to UC was positively correlated with the number of DWC, suggesting that the slower-cycling soil carbon may be more vulnerable to DWC than the faster-cycling soil carbon and the “physical mechanism” may play a role in substrate release and CO2 emission after multiple DWC. Overall, our study provided a comprehensive analysis of the effects of DWC on CSR and showed that frequent drying-rewetting cycles induced by climate change might stimulate the loss of soil carbon to the atmosphere. Moreover, the similar CSR between DWC and MC (which have the same mean soil moisture content) suggests that the CO2 pulse after rewetting may be compensated by the low CO2 emission during the drying phase. Further research is needed to explore the responses of SOC pools with different turnover times to DWC and to investigate the DWC effects on soil respiration by in situ experiments and long-term studies. Drying-rewetting CO Soil organic matter Soil carbon pool Soil respiration Yu, Zhiguo verfasserin aut Lin, Junjie verfasserin aut Zhu, Biao verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 361 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:361 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften AR 361 |
spelling |
10.1016/j.geoderma.2019.114069 doi (DE-627)ELV003471802 (ELSEVIER)S0016-7061(19)31383-7 DE-627 ger DE-627 rda eng 550 910 DE-600 38.60 bkl Zhang, Shuai verfasserin aut Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative soil respiration (CSR), their results are often contradictory, which offers us an opportunity to explore potential influencing factors and variability among studies. Using a meta-analysis including 524 observations from studies across different ecosystems and soil types, we investigated the responses of CSR to DWC. Our results indicated that DWC led to 72% stimulation of CSR compared with lower constant-moisture control (LC), 25% inhibition compared with upper constant-moisture control (UC), but minimal difference with mean constant-moisture control (MC), respectively. The meta-regression analysis showed that the DWC effect on CSR depended on mean annual precipitation, soil properties (clay content, C/N ratio, TN, pH), and the duration of drying in the DWC treatment. In addition, the effect size of CSR relative to UC was positively correlated with the number of DWC, suggesting that the slower-cycling soil carbon may be more vulnerable to DWC than the faster-cycling soil carbon and the “physical mechanism” may play a role in substrate release and CO2 emission after multiple DWC. Overall, our study provided a comprehensive analysis of the effects of DWC on CSR and showed that frequent drying-rewetting cycles induced by climate change might stimulate the loss of soil carbon to the atmosphere. Moreover, the similar CSR between DWC and MC (which have the same mean soil moisture content) suggests that the CO2 pulse after rewetting may be compensated by the low CO2 emission during the drying phase. Further research is needed to explore the responses of SOC pools with different turnover times to DWC and to investigate the DWC effects on soil respiration by in situ experiments and long-term studies. Drying-rewetting CO Soil organic matter Soil carbon pool Soil respiration Yu, Zhiguo verfasserin aut Lin, Junjie verfasserin aut Zhu, Biao verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 361 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:361 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften AR 361 |
allfields_unstemmed |
10.1016/j.geoderma.2019.114069 doi (DE-627)ELV003471802 (ELSEVIER)S0016-7061(19)31383-7 DE-627 ger DE-627 rda eng 550 910 DE-600 38.60 bkl Zhang, Shuai verfasserin aut Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative soil respiration (CSR), their results are often contradictory, which offers us an opportunity to explore potential influencing factors and variability among studies. Using a meta-analysis including 524 observations from studies across different ecosystems and soil types, we investigated the responses of CSR to DWC. Our results indicated that DWC led to 72% stimulation of CSR compared with lower constant-moisture control (LC), 25% inhibition compared with upper constant-moisture control (UC), but minimal difference with mean constant-moisture control (MC), respectively. The meta-regression analysis showed that the DWC effect on CSR depended on mean annual precipitation, soil properties (clay content, C/N ratio, TN, pH), and the duration of drying in the DWC treatment. In addition, the effect size of CSR relative to UC was positively correlated with the number of DWC, suggesting that the slower-cycling soil carbon may be more vulnerable to DWC than the faster-cycling soil carbon and the “physical mechanism” may play a role in substrate release and CO2 emission after multiple DWC. Overall, our study provided a comprehensive analysis of the effects of DWC on CSR and showed that frequent drying-rewetting cycles induced by climate change might stimulate the loss of soil carbon to the atmosphere. Moreover, the similar CSR between DWC and MC (which have the same mean soil moisture content) suggests that the CO2 pulse after rewetting may be compensated by the low CO2 emission during the drying phase. Further research is needed to explore the responses of SOC pools with different turnover times to DWC and to investigate the DWC effects on soil respiration by in situ experiments and long-term studies. Drying-rewetting CO Soil organic matter Soil carbon pool Soil respiration Yu, Zhiguo verfasserin aut Lin, Junjie verfasserin aut Zhu, Biao verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 361 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:361 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften AR 361 |
allfieldsGer |
10.1016/j.geoderma.2019.114069 doi (DE-627)ELV003471802 (ELSEVIER)S0016-7061(19)31383-7 DE-627 ger DE-627 rda eng 550 910 DE-600 38.60 bkl Zhang, Shuai verfasserin aut Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative soil respiration (CSR), their results are often contradictory, which offers us an opportunity to explore potential influencing factors and variability among studies. Using a meta-analysis including 524 observations from studies across different ecosystems and soil types, we investigated the responses of CSR to DWC. Our results indicated that DWC led to 72% stimulation of CSR compared with lower constant-moisture control (LC), 25% inhibition compared with upper constant-moisture control (UC), but minimal difference with mean constant-moisture control (MC), respectively. The meta-regression analysis showed that the DWC effect on CSR depended on mean annual precipitation, soil properties (clay content, C/N ratio, TN, pH), and the duration of drying in the DWC treatment. In addition, the effect size of CSR relative to UC was positively correlated with the number of DWC, suggesting that the slower-cycling soil carbon may be more vulnerable to DWC than the faster-cycling soil carbon and the “physical mechanism” may play a role in substrate release and CO2 emission after multiple DWC. Overall, our study provided a comprehensive analysis of the effects of DWC on CSR and showed that frequent drying-rewetting cycles induced by climate change might stimulate the loss of soil carbon to the atmosphere. Moreover, the similar CSR between DWC and MC (which have the same mean soil moisture content) suggests that the CO2 pulse after rewetting may be compensated by the low CO2 emission during the drying phase. Further research is needed to explore the responses of SOC pools with different turnover times to DWC and to investigate the DWC effects on soil respiration by in situ experiments and long-term studies. Drying-rewetting CO Soil organic matter Soil carbon pool Soil respiration Yu, Zhiguo verfasserin aut Lin, Junjie verfasserin aut Zhu, Biao verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 361 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:361 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften AR 361 |
allfieldsSound |
10.1016/j.geoderma.2019.114069 doi (DE-627)ELV003471802 (ELSEVIER)S0016-7061(19)31383-7 DE-627 ger DE-627 rda eng 550 910 DE-600 38.60 bkl Zhang, Shuai verfasserin aut Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative soil respiration (CSR), their results are often contradictory, which offers us an opportunity to explore potential influencing factors and variability among studies. Using a meta-analysis including 524 observations from studies across different ecosystems and soil types, we investigated the responses of CSR to DWC. Our results indicated that DWC led to 72% stimulation of CSR compared with lower constant-moisture control (LC), 25% inhibition compared with upper constant-moisture control (UC), but minimal difference with mean constant-moisture control (MC), respectively. The meta-regression analysis showed that the DWC effect on CSR depended on mean annual precipitation, soil properties (clay content, C/N ratio, TN, pH), and the duration of drying in the DWC treatment. In addition, the effect size of CSR relative to UC was positively correlated with the number of DWC, suggesting that the slower-cycling soil carbon may be more vulnerable to DWC than the faster-cycling soil carbon and the “physical mechanism” may play a role in substrate release and CO2 emission after multiple DWC. Overall, our study provided a comprehensive analysis of the effects of DWC on CSR and showed that frequent drying-rewetting cycles induced by climate change might stimulate the loss of soil carbon to the atmosphere. Moreover, the similar CSR between DWC and MC (which have the same mean soil moisture content) suggests that the CO2 pulse after rewetting may be compensated by the low CO2 emission during the drying phase. Further research is needed to explore the responses of SOC pools with different turnover times to DWC and to investigate the DWC effects on soil respiration by in situ experiments and long-term studies. Drying-rewetting CO Soil organic matter Soil carbon pool Soil respiration Yu, Zhiguo verfasserin aut Lin, Junjie verfasserin aut Zhu, Biao verfasserin aut Enthalten in Geoderma Amsterdam [u.a.] : Elsevier Science, 1967 361 Online-Ressource (DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 1872-6259 nnns volume:361 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.60 Bodenkunde: Allgemeines Geowissenschaften AR 361 |
language |
English |
source |
Enthalten in Geoderma 361 volume:361 |
sourceStr |
Enthalten in Geoderma 361 volume:361 |
format_phy_str_mv |
Article |
bklname |
Bodenkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Drying-rewetting CO Soil organic matter Soil carbon pool Soil respiration |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geoderma |
authorswithroles_txt_mv |
Zhang, Shuai @@aut@@ Yu, Zhiguo @@aut@@ Lin, Junjie @@aut@@ Zhu, Biao @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320414493 |
dewey-sort |
3550 |
id |
ELV003471802 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003471802</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145129.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.geoderma.2019.114069</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003471802</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7061(19)31383-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">910</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Shuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative soil respiration (CSR), their results are often contradictory, which offers us an opportunity to explore potential influencing factors and variability among studies. Using a meta-analysis including 524 observations from studies across different ecosystems and soil types, we investigated the responses of CSR to DWC. Our results indicated that DWC led to 72% stimulation of CSR compared with lower constant-moisture control (LC), 25% inhibition compared with upper constant-moisture control (UC), but minimal difference with mean constant-moisture control (MC), respectively. The meta-regression analysis showed that the DWC effect on CSR depended on mean annual precipitation, soil properties (clay content, C/N ratio, TN, pH), and the duration of drying in the DWC treatment. In addition, the effect size of CSR relative to UC was positively correlated with the number of DWC, suggesting that the slower-cycling soil carbon may be more vulnerable to DWC than the faster-cycling soil carbon and the “physical mechanism” may play a role in substrate release and CO2 emission after multiple DWC. Overall, our study provided a comprehensive analysis of the effects of DWC on CSR and showed that frequent drying-rewetting cycles induced by climate change might stimulate the loss of soil carbon to the atmosphere. Moreover, the similar CSR between DWC and MC (which have the same mean soil moisture content) suggests that the CO2 pulse after rewetting may be compensated by the low CO2 emission during the drying phase. Further research is needed to explore the responses of SOC pools with different turnover times to DWC and to investigate the DWC effects on soil respiration by in situ experiments and long-term studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drying-rewetting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil organic matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil carbon pool</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil respiration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Zhiguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Junjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Biao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geoderma</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1967</subfield><subfield code="g">361</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320414493</subfield><subfield code="w">(DE-600)2001729-7</subfield><subfield code="w">(DE-576)099603853</subfield><subfield code="x">1872-6259</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:361</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.60</subfield><subfield code="j">Bodenkunde: Allgemeines</subfield><subfield code="x">Geowissenschaften</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">361</subfield></datafield></record></collection>
|
author |
Zhang, Shuai |
spellingShingle |
Zhang, Shuai ddc 550 bkl 38.60 misc Drying-rewetting misc CO misc Soil organic matter misc Soil carbon pool misc Soil respiration Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis |
authorStr |
Zhang, Shuai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320414493 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 910 - Geography & travel |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-6259 |
topic_title |
550 910 DE-600 38.60 bkl Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis Drying-rewetting CO Soil organic matter Soil carbon pool Soil respiration |
topic |
ddc 550 bkl 38.60 misc Drying-rewetting misc CO misc Soil organic matter misc Soil carbon pool misc Soil respiration |
topic_unstemmed |
ddc 550 bkl 38.60 misc Drying-rewetting misc CO misc Soil organic matter misc Soil carbon pool misc Soil respiration |
topic_browse |
ddc 550 bkl 38.60 misc Drying-rewetting misc CO misc Soil organic matter misc Soil carbon pool misc Soil respiration |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geoderma |
hierarchy_parent_id |
320414493 |
dewey-tens |
550 - Earth sciences & geology 910 - Geography & travel |
hierarchy_top_title |
Geoderma |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320414493 (DE-600)2001729-7 (DE-576)099603853 |
title |
Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis |
ctrlnum |
(DE-627)ELV003471802 (ELSEVIER)S0016-7061(19)31383-7 |
title_full |
Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis |
author_sort |
Zhang, Shuai |
journal |
Geoderma |
journalStr |
Geoderma |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 900 - History & geography |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Shuai Yu, Zhiguo Lin, Junjie Zhu, Biao |
container_volume |
361 |
class |
550 910 DE-600 38.60 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Shuai |
doi_str_mv |
10.1016/j.geoderma.2019.114069 |
dewey-full |
550 910 |
author2-role |
verfasserin |
title_sort |
responses of soil carbon decomposition to drying-rewetting cycles: a meta-analysis |
title_auth |
Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis |
abstract |
Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative soil respiration (CSR), their results are often contradictory, which offers us an opportunity to explore potential influencing factors and variability among studies. Using a meta-analysis including 524 observations from studies across different ecosystems and soil types, we investigated the responses of CSR to DWC. Our results indicated that DWC led to 72% stimulation of CSR compared with lower constant-moisture control (LC), 25% inhibition compared with upper constant-moisture control (UC), but minimal difference with mean constant-moisture control (MC), respectively. The meta-regression analysis showed that the DWC effect on CSR depended on mean annual precipitation, soil properties (clay content, C/N ratio, TN, pH), and the duration of drying in the DWC treatment. In addition, the effect size of CSR relative to UC was positively correlated with the number of DWC, suggesting that the slower-cycling soil carbon may be more vulnerable to DWC than the faster-cycling soil carbon and the “physical mechanism” may play a role in substrate release and CO2 emission after multiple DWC. Overall, our study provided a comprehensive analysis of the effects of DWC on CSR and showed that frequent drying-rewetting cycles induced by climate change might stimulate the loss of soil carbon to the atmosphere. Moreover, the similar CSR between DWC and MC (which have the same mean soil moisture content) suggests that the CO2 pulse after rewetting may be compensated by the low CO2 emission during the drying phase. Further research is needed to explore the responses of SOC pools with different turnover times to DWC and to investigate the DWC effects on soil respiration by in situ experiments and long-term studies. |
abstractGer |
Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative soil respiration (CSR), their results are often contradictory, which offers us an opportunity to explore potential influencing factors and variability among studies. Using a meta-analysis including 524 observations from studies across different ecosystems and soil types, we investigated the responses of CSR to DWC. Our results indicated that DWC led to 72% stimulation of CSR compared with lower constant-moisture control (LC), 25% inhibition compared with upper constant-moisture control (UC), but minimal difference with mean constant-moisture control (MC), respectively. The meta-regression analysis showed that the DWC effect on CSR depended on mean annual precipitation, soil properties (clay content, C/N ratio, TN, pH), and the duration of drying in the DWC treatment. In addition, the effect size of CSR relative to UC was positively correlated with the number of DWC, suggesting that the slower-cycling soil carbon may be more vulnerable to DWC than the faster-cycling soil carbon and the “physical mechanism” may play a role in substrate release and CO2 emission after multiple DWC. Overall, our study provided a comprehensive analysis of the effects of DWC on CSR and showed that frequent drying-rewetting cycles induced by climate change might stimulate the loss of soil carbon to the atmosphere. Moreover, the similar CSR between DWC and MC (which have the same mean soil moisture content) suggests that the CO2 pulse after rewetting may be compensated by the low CO2 emission during the drying phase. Further research is needed to explore the responses of SOC pools with different turnover times to DWC and to investigate the DWC effects on soil respiration by in situ experiments and long-term studies. |
abstract_unstemmed |
Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative soil respiration (CSR), their results are often contradictory, which offers us an opportunity to explore potential influencing factors and variability among studies. Using a meta-analysis including 524 observations from studies across different ecosystems and soil types, we investigated the responses of CSR to DWC. Our results indicated that DWC led to 72% stimulation of CSR compared with lower constant-moisture control (LC), 25% inhibition compared with upper constant-moisture control (UC), but minimal difference with mean constant-moisture control (MC), respectively. The meta-regression analysis showed that the DWC effect on CSR depended on mean annual precipitation, soil properties (clay content, C/N ratio, TN, pH), and the duration of drying in the DWC treatment. In addition, the effect size of CSR relative to UC was positively correlated with the number of DWC, suggesting that the slower-cycling soil carbon may be more vulnerable to DWC than the faster-cycling soil carbon and the “physical mechanism” may play a role in substrate release and CO2 emission after multiple DWC. Overall, our study provided a comprehensive analysis of the effects of DWC on CSR and showed that frequent drying-rewetting cycles induced by climate change might stimulate the loss of soil carbon to the atmosphere. Moreover, the similar CSR between DWC and MC (which have the same mean soil moisture content) suggests that the CO2 pulse after rewetting may be compensated by the low CO2 emission during the drying phase. Further research is needed to explore the responses of SOC pools with different turnover times to DWC and to investigate the DWC effects on soil respiration by in situ experiments and long-term studies. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis |
remote_bool |
true |
author2 |
Yu, Zhiguo Lin, Junjie Zhu, Biao |
author2Str |
Yu, Zhiguo Lin, Junjie Zhu, Biao |
ppnlink |
320414493 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.geoderma.2019.114069 |
up_date |
2024-07-06T19:44:11.398Z |
_version_ |
1803860103815757824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003471802</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145129.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.geoderma.2019.114069</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003471802</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7061(19)31383-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">910</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Shuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Drying-rewetting cycles (DWC) is an important climate change factor in this century. The rewetting of dry soil stimulates carbon dioxide emission into the atmosphere, which is called the Birch effect. Although a large number of studies have been conducted to quantify the effect of DWC on cumulative soil respiration (CSR), their results are often contradictory, which offers us an opportunity to explore potential influencing factors and variability among studies. Using a meta-analysis including 524 observations from studies across different ecosystems and soil types, we investigated the responses of CSR to DWC. Our results indicated that DWC led to 72% stimulation of CSR compared with lower constant-moisture control (LC), 25% inhibition compared with upper constant-moisture control (UC), but minimal difference with mean constant-moisture control (MC), respectively. The meta-regression analysis showed that the DWC effect on CSR depended on mean annual precipitation, soil properties (clay content, C/N ratio, TN, pH), and the duration of drying in the DWC treatment. In addition, the effect size of CSR relative to UC was positively correlated with the number of DWC, suggesting that the slower-cycling soil carbon may be more vulnerable to DWC than the faster-cycling soil carbon and the “physical mechanism” may play a role in substrate release and CO2 emission after multiple DWC. Overall, our study provided a comprehensive analysis of the effects of DWC on CSR and showed that frequent drying-rewetting cycles induced by climate change might stimulate the loss of soil carbon to the atmosphere. Moreover, the similar CSR between DWC and MC (which have the same mean soil moisture content) suggests that the CO2 pulse after rewetting may be compensated by the low CO2 emission during the drying phase. Further research is needed to explore the responses of SOC pools with different turnover times to DWC and to investigate the DWC effects on soil respiration by in situ experiments and long-term studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drying-rewetting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil organic matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil carbon pool</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil respiration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Zhiguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Junjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Biao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geoderma</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1967</subfield><subfield code="g">361</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320414493</subfield><subfield code="w">(DE-600)2001729-7</subfield><subfield code="w">(DE-576)099603853</subfield><subfield code="x">1872-6259</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:361</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.60</subfield><subfield code="j">Bodenkunde: Allgemeines</subfield><subfield code="x">Geowissenschaften</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">361</subfield></datafield></record></collection>
|
score |
7.401348 |