Non-local total variation regularization models for image restoration
Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work e...
Ausführliche Beschreibung
Autor*in: |
Jidesh, P. [verfasserIn] K., Shivarama Holla [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers & electrical engineering - Amsterdam [u.a.] : Elsevier Science, 1973, 67, Seite 114-133 |
---|---|
Übergeordnetes Werk: |
volume:67 ; pages:114-133 |
DOI / URN: |
10.1016/j.compeleceng.2018.03.014 |
---|
Katalog-ID: |
ELV003499472 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003499472 | ||
003 | DE-627 | ||
005 | 20230524165052.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230430s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compeleceng.2018.03.014 |2 doi | |
035 | |a (DE-627)ELV003499472 | ||
035 | |a (ELSEVIER)S0045-7906(17)33447-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 53.00 |2 bkl | ||
084 | |a 35.06 |2 bkl | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Jidesh, P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Non-local total variation regularization models for image restoration |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work employs a variance stabilization approach and two variational approaches for restoring images from their noisy and blurred observations. The split-Bregman iterative scheme is used for numerically solving the models to improve their convergence rates. Furthermore, non-local total variation and non-local total bounded variation priors are being used as regularizers in these models to improve their restoration efficiency. Various synthetic and real images (such as ultrasound and synthetic aperture radar images) are tested to show the performance of these models. | ||
650 | 4 | |a Non-local total variation | |
650 | 4 | |a Total bounded variation | |
650 | 4 | |a Rayleigh noise | |
650 | 4 | |a Split Bergman | |
650 | 4 | |a Variance stabilization | |
650 | 4 | |a Linear blur | |
700 | 1 | |a K., Shivarama Holla |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers & electrical engineering |d Amsterdam [u.a.] : Elsevier Science, 1973 |g 67, Seite 114-133 |h Online-Ressource |w (DE-627)306715872 |w (DE-600)1501325-X |w (DE-576)094531293 |x 1879-0755 |7 nnns |
773 | 1 | 8 | |g volume:67 |g pages:114-133 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 53.00 |j Elektrotechnik: Allgemeines |
936 | b | k | |a 35.06 |j Computeranwendungen |x Chemie |
936 | b | k | |a 54.00 |j Informatik: Allgemeines |
951 | |a AR | ||
952 | |d 67 |h 114-133 |
author_variant |
p j pj s h k sh shk |
---|---|
matchkey_str |
article:18790755:2018----::olcloavraineuaiainoeso |
hierarchy_sort_str |
2018 |
bklnumber |
53.00 35.06 54.00 |
publishDate |
2018 |
allfields |
10.1016/j.compeleceng.2018.03.014 doi (DE-627)ELV003499472 (ELSEVIER)S0045-7906(17)33447-X DE-627 ger DE-627 rda eng 620 DE-600 53.00 bkl 35.06 bkl 54.00 bkl Jidesh, P. verfasserin aut Non-local total variation regularization models for image restoration 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work employs a variance stabilization approach and two variational approaches for restoring images from their noisy and blurred observations. The split-Bregman iterative scheme is used for numerically solving the models to improve their convergence rates. Furthermore, non-local total variation and non-local total bounded variation priors are being used as regularizers in these models to improve their restoration efficiency. Various synthetic and real images (such as ultrasound and synthetic aperture radar images) are tested to show the performance of these models. Non-local total variation Total bounded variation Rayleigh noise Split Bergman Variance stabilization Linear blur K., Shivarama Holla verfasserin aut Enthalten in Computers & electrical engineering Amsterdam [u.a.] : Elsevier Science, 1973 67, Seite 114-133 Online-Ressource (DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 1879-0755 nnns volume:67 pages:114-133 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.00 Elektrotechnik: Allgemeines 35.06 Computeranwendungen Chemie 54.00 Informatik: Allgemeines AR 67 114-133 |
spelling |
10.1016/j.compeleceng.2018.03.014 doi (DE-627)ELV003499472 (ELSEVIER)S0045-7906(17)33447-X DE-627 ger DE-627 rda eng 620 DE-600 53.00 bkl 35.06 bkl 54.00 bkl Jidesh, P. verfasserin aut Non-local total variation regularization models for image restoration 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work employs a variance stabilization approach and two variational approaches for restoring images from their noisy and blurred observations. The split-Bregman iterative scheme is used for numerically solving the models to improve their convergence rates. Furthermore, non-local total variation and non-local total bounded variation priors are being used as regularizers in these models to improve their restoration efficiency. Various synthetic and real images (such as ultrasound and synthetic aperture radar images) are tested to show the performance of these models. Non-local total variation Total bounded variation Rayleigh noise Split Bergman Variance stabilization Linear blur K., Shivarama Holla verfasserin aut Enthalten in Computers & electrical engineering Amsterdam [u.a.] : Elsevier Science, 1973 67, Seite 114-133 Online-Ressource (DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 1879-0755 nnns volume:67 pages:114-133 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.00 Elektrotechnik: Allgemeines 35.06 Computeranwendungen Chemie 54.00 Informatik: Allgemeines AR 67 114-133 |
allfields_unstemmed |
10.1016/j.compeleceng.2018.03.014 doi (DE-627)ELV003499472 (ELSEVIER)S0045-7906(17)33447-X DE-627 ger DE-627 rda eng 620 DE-600 53.00 bkl 35.06 bkl 54.00 bkl Jidesh, P. verfasserin aut Non-local total variation regularization models for image restoration 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work employs a variance stabilization approach and two variational approaches for restoring images from their noisy and blurred observations. The split-Bregman iterative scheme is used for numerically solving the models to improve their convergence rates. Furthermore, non-local total variation and non-local total bounded variation priors are being used as regularizers in these models to improve their restoration efficiency. Various synthetic and real images (such as ultrasound and synthetic aperture radar images) are tested to show the performance of these models. Non-local total variation Total bounded variation Rayleigh noise Split Bergman Variance stabilization Linear blur K., Shivarama Holla verfasserin aut Enthalten in Computers & electrical engineering Amsterdam [u.a.] : Elsevier Science, 1973 67, Seite 114-133 Online-Ressource (DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 1879-0755 nnns volume:67 pages:114-133 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.00 Elektrotechnik: Allgemeines 35.06 Computeranwendungen Chemie 54.00 Informatik: Allgemeines AR 67 114-133 |
allfieldsGer |
10.1016/j.compeleceng.2018.03.014 doi (DE-627)ELV003499472 (ELSEVIER)S0045-7906(17)33447-X DE-627 ger DE-627 rda eng 620 DE-600 53.00 bkl 35.06 bkl 54.00 bkl Jidesh, P. verfasserin aut Non-local total variation regularization models for image restoration 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work employs a variance stabilization approach and two variational approaches for restoring images from their noisy and blurred observations. The split-Bregman iterative scheme is used for numerically solving the models to improve their convergence rates. Furthermore, non-local total variation and non-local total bounded variation priors are being used as regularizers in these models to improve their restoration efficiency. Various synthetic and real images (such as ultrasound and synthetic aperture radar images) are tested to show the performance of these models. Non-local total variation Total bounded variation Rayleigh noise Split Bergman Variance stabilization Linear blur K., Shivarama Holla verfasserin aut Enthalten in Computers & electrical engineering Amsterdam [u.a.] : Elsevier Science, 1973 67, Seite 114-133 Online-Ressource (DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 1879-0755 nnns volume:67 pages:114-133 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.00 Elektrotechnik: Allgemeines 35.06 Computeranwendungen Chemie 54.00 Informatik: Allgemeines AR 67 114-133 |
allfieldsSound |
10.1016/j.compeleceng.2018.03.014 doi (DE-627)ELV003499472 (ELSEVIER)S0045-7906(17)33447-X DE-627 ger DE-627 rda eng 620 DE-600 53.00 bkl 35.06 bkl 54.00 bkl Jidesh, P. verfasserin aut Non-local total variation regularization models for image restoration 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work employs a variance stabilization approach and two variational approaches for restoring images from their noisy and blurred observations. The split-Bregman iterative scheme is used for numerically solving the models to improve their convergence rates. Furthermore, non-local total variation and non-local total bounded variation priors are being used as regularizers in these models to improve their restoration efficiency. Various synthetic and real images (such as ultrasound and synthetic aperture radar images) are tested to show the performance of these models. Non-local total variation Total bounded variation Rayleigh noise Split Bergman Variance stabilization Linear blur K., Shivarama Holla verfasserin aut Enthalten in Computers & electrical engineering Amsterdam [u.a.] : Elsevier Science, 1973 67, Seite 114-133 Online-Ressource (DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 1879-0755 nnns volume:67 pages:114-133 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.00 Elektrotechnik: Allgemeines 35.06 Computeranwendungen Chemie 54.00 Informatik: Allgemeines AR 67 114-133 |
language |
English |
source |
Enthalten in Computers & electrical engineering 67, Seite 114-133 volume:67 pages:114-133 |
sourceStr |
Enthalten in Computers & electrical engineering 67, Seite 114-133 volume:67 pages:114-133 |
format_phy_str_mv |
Article |
bklname |
Elektrotechnik: Allgemeines Computeranwendungen Informatik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Non-local total variation Total bounded variation Rayleigh noise Split Bergman Variance stabilization Linear blur |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Computers & electrical engineering |
authorswithroles_txt_mv |
Jidesh, P. @@aut@@ K., Shivarama Holla @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
306715872 |
dewey-sort |
3620 |
id |
ELV003499472 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003499472</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524165052.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compeleceng.2018.03.014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003499472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-7906(17)33447-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.06</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jidesh, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-local total variation regularization models for image restoration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work employs a variance stabilization approach and two variational approaches for restoring images from their noisy and blurred observations. The split-Bregman iterative scheme is used for numerically solving the models to improve their convergence rates. Furthermore, non-local total variation and non-local total bounded variation priors are being used as regularizers in these models to improve their restoration efficiency. Various synthetic and real images (such as ultrasound and synthetic aperture radar images) are tested to show the performance of these models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-local total variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total bounded variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rayleigh noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Split Bergman</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variance stabilization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear blur</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">K., Shivarama Holla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & electrical engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1973</subfield><subfield code="g">67, Seite 114-133</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306715872</subfield><subfield code="w">(DE-600)1501325-X</subfield><subfield code="w">(DE-576)094531293</subfield><subfield code="x">1879-0755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">pages:114-133</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="j">Elektrotechnik: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.06</subfield><subfield code="j">Computeranwendungen</subfield><subfield code="x">Chemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="h">114-133</subfield></datafield></record></collection>
|
author |
Jidesh, P. |
spellingShingle |
Jidesh, P. ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 misc Non-local total variation misc Total bounded variation misc Rayleigh noise misc Split Bergman misc Variance stabilization misc Linear blur Non-local total variation regularization models for image restoration |
authorStr |
Jidesh, P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306715872 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0755 |
topic_title |
620 DE-600 53.00 bkl 35.06 bkl 54.00 bkl Non-local total variation regularization models for image restoration Non-local total variation Total bounded variation Rayleigh noise Split Bergman Variance stabilization Linear blur |
topic |
ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 misc Non-local total variation misc Total bounded variation misc Rayleigh noise misc Split Bergman misc Variance stabilization misc Linear blur |
topic_unstemmed |
ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 misc Non-local total variation misc Total bounded variation misc Rayleigh noise misc Split Bergman misc Variance stabilization misc Linear blur |
topic_browse |
ddc 620 bkl 53.00 bkl 35.06 bkl 54.00 misc Non-local total variation misc Total bounded variation misc Rayleigh noise misc Split Bergman misc Variance stabilization misc Linear blur |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers & electrical engineering |
hierarchy_parent_id |
306715872 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Computers & electrical engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306715872 (DE-600)1501325-X (DE-576)094531293 |
title |
Non-local total variation regularization models for image restoration |
ctrlnum |
(DE-627)ELV003499472 (ELSEVIER)S0045-7906(17)33447-X |
title_full |
Non-local total variation regularization models for image restoration |
author_sort |
Jidesh, P. |
journal |
Computers & electrical engineering |
journalStr |
Computers & electrical engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
114 |
author_browse |
Jidesh, P. K., Shivarama Holla |
container_volume |
67 |
class |
620 DE-600 53.00 bkl 35.06 bkl 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Jidesh, P. |
doi_str_mv |
10.1016/j.compeleceng.2018.03.014 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
non-local total variation regularization models for image restoration |
title_auth |
Non-local total variation regularization models for image restoration |
abstract |
Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work employs a variance stabilization approach and two variational approaches for restoring images from their noisy and blurred observations. The split-Bregman iterative scheme is used for numerically solving the models to improve their convergence rates. Furthermore, non-local total variation and non-local total bounded variation priors are being used as regularizers in these models to improve their restoration efficiency. Various synthetic and real images (such as ultrasound and synthetic aperture radar images) are tested to show the performance of these models. |
abstractGer |
Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work employs a variance stabilization approach and two variational approaches for restoring images from their noisy and blurred observations. The split-Bregman iterative scheme is used for numerically solving the models to improve their convergence rates. Furthermore, non-local total variation and non-local total bounded variation priors are being used as regularizers in these models to improve their restoration efficiency. Various synthetic and real images (such as ultrasound and synthetic aperture radar images) are tested to show the performance of these models. |
abstract_unstemmed |
Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work employs a variance stabilization approach and two variational approaches for restoring images from their noisy and blurred observations. The split-Bregman iterative scheme is used for numerically solving the models to improve their convergence rates. Furthermore, non-local total variation and non-local total bounded variation priors are being used as regularizers in these models to improve their restoration efficiency. Various synthetic and real images (such as ultrasound and synthetic aperture radar images) are tested to show the performance of these models. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Non-local total variation regularization models for image restoration |
remote_bool |
true |
author2 |
K., Shivarama Holla |
author2Str |
K., Shivarama Holla |
ppnlink |
306715872 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compeleceng.2018.03.014 |
up_date |
2024-07-06T19:49:49.409Z |
_version_ |
1803860458247028736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003499472</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524165052.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230430s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compeleceng.2018.03.014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003499472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-7906(17)33447-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.06</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jidesh, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-local total variation regularization models for image restoration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Restoration of images corrupted by data-correlated Rayleigh noise distribution has not been studied much extensively in the literature, unlike the other noise distributions. In this paper, we analyze the degradations due to a data-correlated Rayleigh noise and a linear blurring artifact. This work employs a variance stabilization approach and two variational approaches for restoring images from their noisy and blurred observations. The split-Bregman iterative scheme is used for numerically solving the models to improve their convergence rates. Furthermore, non-local total variation and non-local total bounded variation priors are being used as regularizers in these models to improve their restoration efficiency. Various synthetic and real images (such as ultrasound and synthetic aperture radar images) are tested to show the performance of these models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-local total variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total bounded variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rayleigh noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Split Bergman</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variance stabilization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear blur</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">K., Shivarama Holla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & electrical engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1973</subfield><subfield code="g">67, Seite 114-133</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306715872</subfield><subfield code="w">(DE-600)1501325-X</subfield><subfield code="w">(DE-576)094531293</subfield><subfield code="x">1879-0755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">pages:114-133</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="j">Elektrotechnik: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.06</subfield><subfield code="j">Computeranwendungen</subfield><subfield code="x">Chemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="h">114-133</subfield></datafield></record></collection>
|
score |
7.400058 |