Fixed Z-scheme TiO
The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin...
Ausführliche Beschreibung
Autor*in: |
Zhang, Meng [verfasserIn] Piao, Congcong [verfasserIn] Wang, Di [verfasserIn] Liu, Zhiyu [verfasserIn] Liu, Jize [verfasserIn] Zhang, Zhaohong [verfasserIn] Wang, Jun [verfasserIn] Song, Youtao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Optical materials - Amsterdam [u.a.] : Elsevier Science, 1992, 99 |
---|---|
Übergeordnetes Werk: |
volume:99 |
DOI / URN: |
10.1016/j.optmat.2019.109545 |
---|
Katalog-ID: |
ELV003622681 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003622681 | ||
003 | DE-627 | ||
005 | 20230524162923.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230501s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.optmat.2019.109545 |2 doi | |
035 | |a (DE-627)ELV003622681 | ||
035 | |a (ELSEVIER)S0925-3467(19)30765-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |a 670 |q DE-600 |
084 | |a 51.45 |2 bkl | ||
084 | |a 33.18 |2 bkl | ||
084 | |a 33.38 |2 bkl | ||
084 | |a 50.37 |2 bkl | ||
100 | 1 | |a Zhang, Meng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fixed Z-scheme TiO |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin coating methods, respectively. To evaluate the activity of fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film, the photocatalytic hydrogen production is carried out in aqueous solution containing methanol. Some influence factors such as Ti foil corrosion times, WO3 layer number and Ti foil thickness are considered. The results show that the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film has a superior photocatalytic performance toward hydrogen production. Under solar light irradiation for 4.0 h, the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film gives a 473.2 μmol hydrogen evolution amount, which is much higher than 232.1 μmol of TiO2|Ti film and 25.8 μmol of WO3|Ti film. It is attributed to that Ti foil as conductive channel accelerates e− transfer and restrains e− and h+ recombination. At the same time, Ti foil as carrier can fix TiO2 and WO3 films on its two sides, providing a cyclic utilization way and large-scale hydrogen production possibility. Perhaps, the fixed TiO2|Ti|WO3 composite film will be a promising Z-scheme photocatalyst utilizing solar energy for large-scale hydrogen production. | ||
650 | 4 | |a Fixed Z-scheme photocatalyst | |
650 | 4 | |a TiO | |
650 | 4 | |a Ti foil corrosion-calcination | |
650 | 4 | |a WO | |
650 | 4 | |a Hydrogen evolution | |
650 | 4 | |a Ti foil conductive channel | |
700 | 1 | |a Piao, Congcong |e verfasserin |4 aut | |
700 | 1 | |a Wang, Di |e verfasserin |4 aut | |
700 | 1 | |a Liu, Zhiyu |e verfasserin |4 aut | |
700 | 1 | |a Liu, Jize |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Zhaohong |e verfasserin |4 aut | |
700 | 1 | |a Wang, Jun |e verfasserin |4 aut | |
700 | 1 | |a Song, Youtao |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optical materials |d Amsterdam [u.a.] : Elsevier Science, 1992 |g 99 |h Online-Ressource |w (DE-627)320530175 |w (DE-600)2015659-5 |w (DE-576)25948489X |x 1873-1252 |7 nnns |
773 | 1 | 8 | |g volume:99 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 51.45 |j Werkstoffe mit besonderen Eigenschaften |
936 | b | k | |a 33.18 |j Optik |
936 | b | k | |a 33.38 |j Quantenoptik |j nichtlineare Optik |
936 | b | k | |a 50.37 |j Technische Optik |
951 | |a AR | ||
952 | |d 99 |
author_variant |
m z mz c p cp d w dw z l zl j l jl z z zz j w jw y s ys |
---|---|
matchkey_str |
article:18731252:2019----::iezc |
hierarchy_sort_str |
2019 |
bklnumber |
51.45 33.18 33.38 50.37 |
publishDate |
2019 |
allfields |
10.1016/j.optmat.2019.109545 doi (DE-627)ELV003622681 (ELSEVIER)S0925-3467(19)30765-7 DE-627 ger DE-627 rda eng 530 620 670 DE-600 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Zhang, Meng verfasserin aut Fixed Z-scheme TiO 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin coating methods, respectively. To evaluate the activity of fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film, the photocatalytic hydrogen production is carried out in aqueous solution containing methanol. Some influence factors such as Ti foil corrosion times, WO3 layer number and Ti foil thickness are considered. The results show that the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film has a superior photocatalytic performance toward hydrogen production. Under solar light irradiation for 4.0 h, the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film gives a 473.2 μmol hydrogen evolution amount, which is much higher than 232.1 μmol of TiO2|Ti film and 25.8 μmol of WO3|Ti film. It is attributed to that Ti foil as conductive channel accelerates e− transfer and restrains e− and h+ recombination. At the same time, Ti foil as carrier can fix TiO2 and WO3 films on its two sides, providing a cyclic utilization way and large-scale hydrogen production possibility. Perhaps, the fixed TiO2|Ti|WO3 composite film will be a promising Z-scheme photocatalyst utilizing solar energy for large-scale hydrogen production. Fixed Z-scheme photocatalyst TiO Ti foil corrosion-calcination WO Hydrogen evolution Ti foil conductive channel Piao, Congcong verfasserin aut Wang, Di verfasserin aut Liu, Zhiyu verfasserin aut Liu, Jize verfasserin aut Zhang, Zhaohong verfasserin aut Wang, Jun verfasserin aut Song, Youtao verfasserin aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 99 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:99 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.45 Werkstoffe mit besonderen Eigenschaften 33.18 Optik 33.38 Quantenoptik nichtlineare Optik 50.37 Technische Optik AR 99 |
spelling |
10.1016/j.optmat.2019.109545 doi (DE-627)ELV003622681 (ELSEVIER)S0925-3467(19)30765-7 DE-627 ger DE-627 rda eng 530 620 670 DE-600 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Zhang, Meng verfasserin aut Fixed Z-scheme TiO 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin coating methods, respectively. To evaluate the activity of fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film, the photocatalytic hydrogen production is carried out in aqueous solution containing methanol. Some influence factors such as Ti foil corrosion times, WO3 layer number and Ti foil thickness are considered. The results show that the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film has a superior photocatalytic performance toward hydrogen production. Under solar light irradiation for 4.0 h, the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film gives a 473.2 μmol hydrogen evolution amount, which is much higher than 232.1 μmol of TiO2|Ti film and 25.8 μmol of WO3|Ti film. It is attributed to that Ti foil as conductive channel accelerates e− transfer and restrains e− and h+ recombination. At the same time, Ti foil as carrier can fix TiO2 and WO3 films on its two sides, providing a cyclic utilization way and large-scale hydrogen production possibility. Perhaps, the fixed TiO2|Ti|WO3 composite film will be a promising Z-scheme photocatalyst utilizing solar energy for large-scale hydrogen production. Fixed Z-scheme photocatalyst TiO Ti foil corrosion-calcination WO Hydrogen evolution Ti foil conductive channel Piao, Congcong verfasserin aut Wang, Di verfasserin aut Liu, Zhiyu verfasserin aut Liu, Jize verfasserin aut Zhang, Zhaohong verfasserin aut Wang, Jun verfasserin aut Song, Youtao verfasserin aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 99 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:99 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.45 Werkstoffe mit besonderen Eigenschaften 33.18 Optik 33.38 Quantenoptik nichtlineare Optik 50.37 Technische Optik AR 99 |
allfields_unstemmed |
10.1016/j.optmat.2019.109545 doi (DE-627)ELV003622681 (ELSEVIER)S0925-3467(19)30765-7 DE-627 ger DE-627 rda eng 530 620 670 DE-600 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Zhang, Meng verfasserin aut Fixed Z-scheme TiO 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin coating methods, respectively. To evaluate the activity of fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film, the photocatalytic hydrogen production is carried out in aqueous solution containing methanol. Some influence factors such as Ti foil corrosion times, WO3 layer number and Ti foil thickness are considered. The results show that the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film has a superior photocatalytic performance toward hydrogen production. Under solar light irradiation for 4.0 h, the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film gives a 473.2 μmol hydrogen evolution amount, which is much higher than 232.1 μmol of TiO2|Ti film and 25.8 μmol of WO3|Ti film. It is attributed to that Ti foil as conductive channel accelerates e− transfer and restrains e− and h+ recombination. At the same time, Ti foil as carrier can fix TiO2 and WO3 films on its two sides, providing a cyclic utilization way and large-scale hydrogen production possibility. Perhaps, the fixed TiO2|Ti|WO3 composite film will be a promising Z-scheme photocatalyst utilizing solar energy for large-scale hydrogen production. Fixed Z-scheme photocatalyst TiO Ti foil corrosion-calcination WO Hydrogen evolution Ti foil conductive channel Piao, Congcong verfasserin aut Wang, Di verfasserin aut Liu, Zhiyu verfasserin aut Liu, Jize verfasserin aut Zhang, Zhaohong verfasserin aut Wang, Jun verfasserin aut Song, Youtao verfasserin aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 99 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:99 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.45 Werkstoffe mit besonderen Eigenschaften 33.18 Optik 33.38 Quantenoptik nichtlineare Optik 50.37 Technische Optik AR 99 |
allfieldsGer |
10.1016/j.optmat.2019.109545 doi (DE-627)ELV003622681 (ELSEVIER)S0925-3467(19)30765-7 DE-627 ger DE-627 rda eng 530 620 670 DE-600 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Zhang, Meng verfasserin aut Fixed Z-scheme TiO 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin coating methods, respectively. To evaluate the activity of fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film, the photocatalytic hydrogen production is carried out in aqueous solution containing methanol. Some influence factors such as Ti foil corrosion times, WO3 layer number and Ti foil thickness are considered. The results show that the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film has a superior photocatalytic performance toward hydrogen production. Under solar light irradiation for 4.0 h, the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film gives a 473.2 μmol hydrogen evolution amount, which is much higher than 232.1 μmol of TiO2|Ti film and 25.8 μmol of WO3|Ti film. It is attributed to that Ti foil as conductive channel accelerates e− transfer and restrains e− and h+ recombination. At the same time, Ti foil as carrier can fix TiO2 and WO3 films on its two sides, providing a cyclic utilization way and large-scale hydrogen production possibility. Perhaps, the fixed TiO2|Ti|WO3 composite film will be a promising Z-scheme photocatalyst utilizing solar energy for large-scale hydrogen production. Fixed Z-scheme photocatalyst TiO Ti foil corrosion-calcination WO Hydrogen evolution Ti foil conductive channel Piao, Congcong verfasserin aut Wang, Di verfasserin aut Liu, Zhiyu verfasserin aut Liu, Jize verfasserin aut Zhang, Zhaohong verfasserin aut Wang, Jun verfasserin aut Song, Youtao verfasserin aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 99 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:99 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.45 Werkstoffe mit besonderen Eigenschaften 33.18 Optik 33.38 Quantenoptik nichtlineare Optik 50.37 Technische Optik AR 99 |
allfieldsSound |
10.1016/j.optmat.2019.109545 doi (DE-627)ELV003622681 (ELSEVIER)S0925-3467(19)30765-7 DE-627 ger DE-627 rda eng 530 620 670 DE-600 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Zhang, Meng verfasserin aut Fixed Z-scheme TiO 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin coating methods, respectively. To evaluate the activity of fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film, the photocatalytic hydrogen production is carried out in aqueous solution containing methanol. Some influence factors such as Ti foil corrosion times, WO3 layer number and Ti foil thickness are considered. The results show that the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film has a superior photocatalytic performance toward hydrogen production. Under solar light irradiation for 4.0 h, the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film gives a 473.2 μmol hydrogen evolution amount, which is much higher than 232.1 μmol of TiO2|Ti film and 25.8 μmol of WO3|Ti film. It is attributed to that Ti foil as conductive channel accelerates e− transfer and restrains e− and h+ recombination. At the same time, Ti foil as carrier can fix TiO2 and WO3 films on its two sides, providing a cyclic utilization way and large-scale hydrogen production possibility. Perhaps, the fixed TiO2|Ti|WO3 composite film will be a promising Z-scheme photocatalyst utilizing solar energy for large-scale hydrogen production. Fixed Z-scheme photocatalyst TiO Ti foil corrosion-calcination WO Hydrogen evolution Ti foil conductive channel Piao, Congcong verfasserin aut Wang, Di verfasserin aut Liu, Zhiyu verfasserin aut Liu, Jize verfasserin aut Zhang, Zhaohong verfasserin aut Wang, Jun verfasserin aut Song, Youtao verfasserin aut Enthalten in Optical materials Amsterdam [u.a.] : Elsevier Science, 1992 99 Online-Ressource (DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X 1873-1252 nnns volume:99 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.45 Werkstoffe mit besonderen Eigenschaften 33.18 Optik 33.38 Quantenoptik nichtlineare Optik 50.37 Technische Optik AR 99 |
language |
English |
source |
Enthalten in Optical materials 99 volume:99 |
sourceStr |
Enthalten in Optical materials 99 volume:99 |
format_phy_str_mv |
Article |
bklname |
Werkstoffe mit besonderen Eigenschaften Optik Quantenoptik nichtlineare Optik Technische Optik |
institution |
findex.gbv.de |
topic_facet |
Fixed Z-scheme photocatalyst TiO Ti foil corrosion-calcination WO Hydrogen evolution Ti foil conductive channel |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Optical materials |
authorswithroles_txt_mv |
Zhang, Meng @@aut@@ Piao, Congcong @@aut@@ Wang, Di @@aut@@ Liu, Zhiyu @@aut@@ Liu, Jize @@aut@@ Zhang, Zhaohong @@aut@@ Wang, Jun @@aut@@ Song, Youtao @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320530175 |
dewey-sort |
3530 |
id |
ELV003622681 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003622681</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162923.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230501s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optmat.2019.109545</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003622681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-3467(19)30765-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fixed Z-scheme TiO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin coating methods, respectively. To evaluate the activity of fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film, the photocatalytic hydrogen production is carried out in aqueous solution containing methanol. Some influence factors such as Ti foil corrosion times, WO3 layer number and Ti foil thickness are considered. The results show that the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film has a superior photocatalytic performance toward hydrogen production. Under solar light irradiation for 4.0 h, the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film gives a 473.2 μmol hydrogen evolution amount, which is much higher than 232.1 μmol of TiO2|Ti film and 25.8 μmol of WO3|Ti film. It is attributed to that Ti foil as conductive channel accelerates e− transfer and restrains e− and h+ recombination. At the same time, Ti foil as carrier can fix TiO2 and WO3 films on its two sides, providing a cyclic utilization way and large-scale hydrogen production possibility. Perhaps, the fixed TiO2|Ti|WO3 composite film will be a promising Z-scheme photocatalyst utilizing solar energy for large-scale hydrogen production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed Z-scheme photocatalyst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ti foil corrosion-calcination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ti foil conductive channel</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piao, Congcong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Di</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jize</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhaohong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Youtao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical materials</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1992</subfield><subfield code="g">99</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320530175</subfield><subfield code="w">(DE-600)2015659-5</subfield><subfield code="w">(DE-576)25948489X</subfield><subfield code="x">1873-1252</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:99</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.18</subfield><subfield code="j">Optik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">99</subfield></datafield></record></collection>
|
author |
Zhang, Meng |
spellingShingle |
Zhang, Meng ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Fixed Z-scheme photocatalyst misc TiO misc Ti foil corrosion-calcination misc WO misc Hydrogen evolution misc Ti foil conductive channel Fixed Z-scheme TiO |
authorStr |
Zhang, Meng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320530175 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-1252 |
topic_title |
530 620 670 DE-600 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl Fixed Z-scheme TiO Fixed Z-scheme photocatalyst TiO Ti foil corrosion-calcination WO Hydrogen evolution Ti foil conductive channel |
topic |
ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Fixed Z-scheme photocatalyst misc TiO misc Ti foil corrosion-calcination misc WO misc Hydrogen evolution misc Ti foil conductive channel |
topic_unstemmed |
ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Fixed Z-scheme photocatalyst misc TiO misc Ti foil corrosion-calcination misc WO misc Hydrogen evolution misc Ti foil conductive channel |
topic_browse |
ddc 530 bkl 51.45 bkl 33.18 bkl 33.38 bkl 50.37 misc Fixed Z-scheme photocatalyst misc TiO misc Ti foil corrosion-calcination misc WO misc Hydrogen evolution misc Ti foil conductive channel |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Optical materials |
hierarchy_parent_id |
320530175 |
dewey-tens |
530 - Physics 620 - Engineering 670 - Manufacturing |
hierarchy_top_title |
Optical materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320530175 (DE-600)2015659-5 (DE-576)25948489X |
title |
Fixed Z-scheme TiO |
ctrlnum |
(DE-627)ELV003622681 (ELSEVIER)S0925-3467(19)30765-7 |
title_full |
Fixed Z-scheme TiO |
author_sort |
Zhang, Meng |
journal |
Optical materials |
journalStr |
Optical materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Meng Piao, Congcong Wang, Di Liu, Zhiyu Liu, Jize Zhang, Zhaohong Wang, Jun Song, Youtao |
container_volume |
99 |
class |
530 620 670 DE-600 51.45 bkl 33.18 bkl 33.38 bkl 50.37 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Meng |
doi_str_mv |
10.1016/j.optmat.2019.109545 |
dewey-full |
530 620 670 |
author2-role |
verfasserin |
title_sort |
fixed z-scheme tio |
title_auth |
Fixed Z-scheme TiO |
abstract |
The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin coating methods, respectively. To evaluate the activity of fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film, the photocatalytic hydrogen production is carried out in aqueous solution containing methanol. Some influence factors such as Ti foil corrosion times, WO3 layer number and Ti foil thickness are considered. The results show that the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film has a superior photocatalytic performance toward hydrogen production. Under solar light irradiation for 4.0 h, the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film gives a 473.2 μmol hydrogen evolution amount, which is much higher than 232.1 μmol of TiO2|Ti film and 25.8 μmol of WO3|Ti film. It is attributed to that Ti foil as conductive channel accelerates e− transfer and restrains e− and h+ recombination. At the same time, Ti foil as carrier can fix TiO2 and WO3 films on its two sides, providing a cyclic utilization way and large-scale hydrogen production possibility. Perhaps, the fixed TiO2|Ti|WO3 composite film will be a promising Z-scheme photocatalyst utilizing solar energy for large-scale hydrogen production. |
abstractGer |
The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin coating methods, respectively. To evaluate the activity of fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film, the photocatalytic hydrogen production is carried out in aqueous solution containing methanol. Some influence factors such as Ti foil corrosion times, WO3 layer number and Ti foil thickness are considered. The results show that the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film has a superior photocatalytic performance toward hydrogen production. Under solar light irradiation for 4.0 h, the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film gives a 473.2 μmol hydrogen evolution amount, which is much higher than 232.1 μmol of TiO2|Ti film and 25.8 μmol of WO3|Ti film. It is attributed to that Ti foil as conductive channel accelerates e− transfer and restrains e− and h+ recombination. At the same time, Ti foil as carrier can fix TiO2 and WO3 films on its two sides, providing a cyclic utilization way and large-scale hydrogen production possibility. Perhaps, the fixed TiO2|Ti|WO3 composite film will be a promising Z-scheme photocatalyst utilizing solar energy for large-scale hydrogen production. |
abstract_unstemmed |
The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin coating methods, respectively. To evaluate the activity of fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film, the photocatalytic hydrogen production is carried out in aqueous solution containing methanol. Some influence factors such as Ti foil corrosion times, WO3 layer number and Ti foil thickness are considered. The results show that the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film has a superior photocatalytic performance toward hydrogen production. Under solar light irradiation for 4.0 h, the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film gives a 473.2 μmol hydrogen evolution amount, which is much higher than 232.1 μmol of TiO2|Ti film and 25.8 μmol of WO3|Ti film. It is attributed to that Ti foil as conductive channel accelerates e− transfer and restrains e− and h+ recombination. At the same time, Ti foil as carrier can fix TiO2 and WO3 films on its two sides, providing a cyclic utilization way and large-scale hydrogen production possibility. Perhaps, the fixed TiO2|Ti|WO3 composite film will be a promising Z-scheme photocatalyst utilizing solar energy for large-scale hydrogen production. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Fixed Z-scheme TiO |
remote_bool |
true |
author2 |
Piao, Congcong Wang, Di Liu, Zhiyu Liu, Jize Zhang, Zhaohong Wang, Jun Song, Youtao |
author2Str |
Piao, Congcong Wang, Di Liu, Zhiyu Liu, Jize Zhang, Zhaohong Wang, Jun Song, Youtao |
ppnlink |
320530175 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.optmat.2019.109545 |
up_date |
2024-07-06T20:14:42.562Z |
_version_ |
1803862023931428864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003622681</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162923.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230501s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optmat.2019.109545</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003622681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-3467(19)30765-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fixed Z-scheme TiO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The recycling and reusing of photocatalysts are vital to large-scale hydrogen production. In this work, for this purpose, a novel fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film is prepared. TiO2 and WO3 films are supported on both sides of a Ti foil by corrosion-calcination and sol-gel spin coating methods, respectively. To evaluate the activity of fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film, the photocatalytic hydrogen production is carried out in aqueous solution containing methanol. Some influence factors such as Ti foil corrosion times, WO3 layer number and Ti foil thickness are considered. The results show that the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film has a superior photocatalytic performance toward hydrogen production. Under solar light irradiation for 4.0 h, the fixed Z-scheme TiO2|Ti|WO3 photocatalyst composite film gives a 473.2 μmol hydrogen evolution amount, which is much higher than 232.1 μmol of TiO2|Ti film and 25.8 μmol of WO3|Ti film. It is attributed to that Ti foil as conductive channel accelerates e− transfer and restrains e− and h+ recombination. At the same time, Ti foil as carrier can fix TiO2 and WO3 films on its two sides, providing a cyclic utilization way and large-scale hydrogen production possibility. Perhaps, the fixed TiO2|Ti|WO3 composite film will be a promising Z-scheme photocatalyst utilizing solar energy for large-scale hydrogen production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed Z-scheme photocatalyst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ti foil corrosion-calcination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ti foil conductive channel</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piao, Congcong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Di</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jize</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhaohong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Youtao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical materials</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1992</subfield><subfield code="g">99</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320530175</subfield><subfield code="w">(DE-600)2015659-5</subfield><subfield code="w">(DE-576)25948489X</subfield><subfield code="x">1873-1252</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:99</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.45</subfield><subfield code="j">Werkstoffe mit besonderen Eigenschaften</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.18</subfield><subfield code="j">Optik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">99</subfield></datafield></record></collection>
|
score |
7.401599 |