Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion
Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the da...
Ausführliche Beschreibung
Autor*in: |
Yang, Sisheng [verfasserIn] Zheng, Yangyan [verfasserIn] Ling, Xiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering failure analysis - Oxford [u.a.] : Elsevier Science, 1994, 91, Seite 99-107 |
---|---|
Übergeordnetes Werk: |
volume:91 ; pages:99-107 |
DOI / URN: |
10.1016/j.engfailanal.2018.04.023 |
---|
Katalog-ID: |
ELV003756327 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003756327 | ||
003 | DE-627 | ||
005 | 20230524161506.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230501s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engfailanal.2018.04.023 |2 doi | |
035 | |a (DE-627)ELV003756327 | ||
035 | |a (ELSEVIER)S1350-6307(18)30111-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q DE-600 |
084 | |a 51.32 |2 bkl | ||
084 | |a 50.16 |2 bkl | ||
100 | 1 | |a Yang, Sisheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion |
264 | 1 | |c 2018 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the damage and multiaxial creep evolution process. The results show that the evolution trends of creep deflection and strain with three stages are similar. During deformation, apparent damage localization is observed. The maximum strain and damage also occurred in the necking region due to the stress concentration. Thus, a critical damage value is proposed for service-exposed Cr5Mo in this study. In the primary creep stage, a tensile deformation is observed at the lower surface and a compression deformation is observed at the upper surface. Subsequently, the stress triaxiality tends to be constant in the second creep stage. Thus, steady creep parameters of small punch test can be used to replace traditional creep results in the creep properties analysis of in-service components. Finally, the multiaxial creep and damage evolution characteristics of the small punch creep specimen are obtained. | ||
650 | 4 | |a Damage evolution | |
650 | 4 | |a Multiaxial deformation | |
650 | 4 | |a Small punch creep test | |
650 | 4 | |a Creep properties | |
700 | 1 | |a Zheng, Yangyan |e verfasserin |4 aut | |
700 | 1 | |a Ling, Xiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Engineering failure analysis |d Oxford [u.a.] : Elsevier Science, 1994 |g 91, Seite 99-107 |h Online-Ressource |w (DE-627)320608697 |w (DE-600)2021082-6 |w (DE-576)120883619 |x 1350-6307 |7 nnns |
773 | 1 | 8 | |g volume:91 |g pages:99-107 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 51.32 |j Werkstoffmechanik |
936 | b | k | |a 50.16 |j Technische Zuverlässigkeit |j Instandhaltung |
951 | |a AR | ||
952 | |d 91 |h 99-107 |
author_variant |
s y sy y z yz x l xl |
---|---|
matchkey_str |
article:13506307:2018----::vlainfutailreadaaevltofrmlpnhretscnie |
hierarchy_sort_str |
2018 |
bklnumber |
51.32 50.16 |
publishDate |
2018 |
allfields |
10.1016/j.engfailanal.2018.04.023 doi (DE-627)ELV003756327 (ELSEVIER)S1350-6307(18)30111-0 DE-627 ger DE-627 rda eng 600 DE-600 51.32 bkl 50.16 bkl Yang, Sisheng verfasserin aut Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the damage and multiaxial creep evolution process. The results show that the evolution trends of creep deflection and strain with three stages are similar. During deformation, apparent damage localization is observed. The maximum strain and damage also occurred in the necking region due to the stress concentration. Thus, a critical damage value is proposed for service-exposed Cr5Mo in this study. In the primary creep stage, a tensile deformation is observed at the lower surface and a compression deformation is observed at the upper surface. Subsequently, the stress triaxiality tends to be constant in the second creep stage. Thus, steady creep parameters of small punch test can be used to replace traditional creep results in the creep properties analysis of in-service components. Finally, the multiaxial creep and damage evolution characteristics of the small punch creep specimen are obtained. Damage evolution Multiaxial deformation Small punch creep test Creep properties Zheng, Yangyan verfasserin aut Ling, Xiang verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 91, Seite 99-107 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:91 pages:99-107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 91 99-107 |
spelling |
10.1016/j.engfailanal.2018.04.023 doi (DE-627)ELV003756327 (ELSEVIER)S1350-6307(18)30111-0 DE-627 ger DE-627 rda eng 600 DE-600 51.32 bkl 50.16 bkl Yang, Sisheng verfasserin aut Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the damage and multiaxial creep evolution process. The results show that the evolution trends of creep deflection and strain with three stages are similar. During deformation, apparent damage localization is observed. The maximum strain and damage also occurred in the necking region due to the stress concentration. Thus, a critical damage value is proposed for service-exposed Cr5Mo in this study. In the primary creep stage, a tensile deformation is observed at the lower surface and a compression deformation is observed at the upper surface. Subsequently, the stress triaxiality tends to be constant in the second creep stage. Thus, steady creep parameters of small punch test can be used to replace traditional creep results in the creep properties analysis of in-service components. Finally, the multiaxial creep and damage evolution characteristics of the small punch creep specimen are obtained. Damage evolution Multiaxial deformation Small punch creep test Creep properties Zheng, Yangyan verfasserin aut Ling, Xiang verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 91, Seite 99-107 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:91 pages:99-107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 91 99-107 |
allfields_unstemmed |
10.1016/j.engfailanal.2018.04.023 doi (DE-627)ELV003756327 (ELSEVIER)S1350-6307(18)30111-0 DE-627 ger DE-627 rda eng 600 DE-600 51.32 bkl 50.16 bkl Yang, Sisheng verfasserin aut Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the damage and multiaxial creep evolution process. The results show that the evolution trends of creep deflection and strain with three stages are similar. During deformation, apparent damage localization is observed. The maximum strain and damage also occurred in the necking region due to the stress concentration. Thus, a critical damage value is proposed for service-exposed Cr5Mo in this study. In the primary creep stage, a tensile deformation is observed at the lower surface and a compression deformation is observed at the upper surface. Subsequently, the stress triaxiality tends to be constant in the second creep stage. Thus, steady creep parameters of small punch test can be used to replace traditional creep results in the creep properties analysis of in-service components. Finally, the multiaxial creep and damage evolution characteristics of the small punch creep specimen are obtained. Damage evolution Multiaxial deformation Small punch creep test Creep properties Zheng, Yangyan verfasserin aut Ling, Xiang verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 91, Seite 99-107 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:91 pages:99-107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 91 99-107 |
allfieldsGer |
10.1016/j.engfailanal.2018.04.023 doi (DE-627)ELV003756327 (ELSEVIER)S1350-6307(18)30111-0 DE-627 ger DE-627 rda eng 600 DE-600 51.32 bkl 50.16 bkl Yang, Sisheng verfasserin aut Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the damage and multiaxial creep evolution process. The results show that the evolution trends of creep deflection and strain with three stages are similar. During deformation, apparent damage localization is observed. The maximum strain and damage also occurred in the necking region due to the stress concentration. Thus, a critical damage value is proposed for service-exposed Cr5Mo in this study. In the primary creep stage, a tensile deformation is observed at the lower surface and a compression deformation is observed at the upper surface. Subsequently, the stress triaxiality tends to be constant in the second creep stage. Thus, steady creep parameters of small punch test can be used to replace traditional creep results in the creep properties analysis of in-service components. Finally, the multiaxial creep and damage evolution characteristics of the small punch creep specimen are obtained. Damage evolution Multiaxial deformation Small punch creep test Creep properties Zheng, Yangyan verfasserin aut Ling, Xiang verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 91, Seite 99-107 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:91 pages:99-107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 91 99-107 |
allfieldsSound |
10.1016/j.engfailanal.2018.04.023 doi (DE-627)ELV003756327 (ELSEVIER)S1350-6307(18)30111-0 DE-627 ger DE-627 rda eng 600 DE-600 51.32 bkl 50.16 bkl Yang, Sisheng verfasserin aut Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion 2018 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the damage and multiaxial creep evolution process. The results show that the evolution trends of creep deflection and strain with three stages are similar. During deformation, apparent damage localization is observed. The maximum strain and damage also occurred in the necking region due to the stress concentration. Thus, a critical damage value is proposed for service-exposed Cr5Mo in this study. In the primary creep stage, a tensile deformation is observed at the lower surface and a compression deformation is observed at the upper surface. Subsequently, the stress triaxiality tends to be constant in the second creep stage. Thus, steady creep parameters of small punch test can be used to replace traditional creep results in the creep properties analysis of in-service components. Finally, the multiaxial creep and damage evolution characteristics of the small punch creep specimen are obtained. Damage evolution Multiaxial deformation Small punch creep test Creep properties Zheng, Yangyan verfasserin aut Ling, Xiang verfasserin aut Enthalten in Engineering failure analysis Oxford [u.a.] : Elsevier Science, 1994 91, Seite 99-107 Online-Ressource (DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 1350-6307 nnns volume:91 pages:99-107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik 50.16 Technische Zuverlässigkeit Instandhaltung AR 91 99-107 |
language |
English |
source |
Enthalten in Engineering failure analysis 91, Seite 99-107 volume:91 pages:99-107 |
sourceStr |
Enthalten in Engineering failure analysis 91, Seite 99-107 volume:91 pages:99-107 |
format_phy_str_mv |
Article |
bklname |
Werkstoffmechanik Technische Zuverlässigkeit Instandhaltung |
institution |
findex.gbv.de |
topic_facet |
Damage evolution Multiaxial deformation Small punch creep test Creep properties |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Engineering failure analysis |
authorswithroles_txt_mv |
Yang, Sisheng @@aut@@ Zheng, Yangyan @@aut@@ Ling, Xiang @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
320608697 |
dewey-sort |
3600 |
id |
ELV003756327 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003756327</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161506.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230501s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engfailanal.2018.04.023</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003756327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1350-6307(18)30111-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Sisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the damage and multiaxial creep evolution process. The results show that the evolution trends of creep deflection and strain with three stages are similar. During deformation, apparent damage localization is observed. The maximum strain and damage also occurred in the necking region due to the stress concentration. Thus, a critical damage value is proposed for service-exposed Cr5Mo in this study. In the primary creep stage, a tensile deformation is observed at the lower surface and a compression deformation is observed at the upper surface. Subsequently, the stress triaxiality tends to be constant in the second creep stage. Thus, steady creep parameters of small punch test can be used to replace traditional creep results in the creep properties analysis of in-service components. Finally, the multiaxial creep and damage evolution characteristics of the small punch creep specimen are obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiaxial deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small punch creep test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Yangyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ling, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering failure analysis</subfield><subfield code="d">Oxford [u.a.] : Elsevier Science, 1994</subfield><subfield code="g">91, Seite 99-107</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320608697</subfield><subfield code="w">(DE-600)2021082-6</subfield><subfield code="w">(DE-576)120883619</subfield><subfield code="x">1350-6307</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">pages:99-107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="h">99-107</subfield></datafield></record></collection>
|
author |
Yang, Sisheng |
spellingShingle |
Yang, Sisheng ddc 600 bkl 51.32 bkl 50.16 misc Damage evolution misc Multiaxial deformation misc Small punch creep test misc Creep properties Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion |
authorStr |
Yang, Sisheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320608697 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1350-6307 |
topic_title |
600 DE-600 51.32 bkl 50.16 bkl Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion Damage evolution Multiaxial deformation Small punch creep test Creep properties |
topic |
ddc 600 bkl 51.32 bkl 50.16 misc Damage evolution misc Multiaxial deformation misc Small punch creep test misc Creep properties |
topic_unstemmed |
ddc 600 bkl 51.32 bkl 50.16 misc Damage evolution misc Multiaxial deformation misc Small punch creep test misc Creep properties |
topic_browse |
ddc 600 bkl 51.32 bkl 50.16 misc Damage evolution misc Multiaxial deformation misc Small punch creep test misc Creep properties |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering failure analysis |
hierarchy_parent_id |
320608697 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Engineering failure analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320608697 (DE-600)2021082-6 (DE-576)120883619 |
title |
Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion |
ctrlnum |
(DE-627)ELV003756327 (ELSEVIER)S1350-6307(18)30111-0 |
title_full |
Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion |
author_sort |
Yang, Sisheng |
journal |
Engineering failure analysis |
journalStr |
Engineering failure analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
zzz |
container_start_page |
99 |
author_browse |
Yang, Sisheng Zheng, Yangyan Ling, Xiang |
container_volume |
91 |
class |
600 DE-600 51.32 bkl 50.16 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yang, Sisheng |
doi_str_mv |
10.1016/j.engfailanal.2018.04.023 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion |
title_auth |
Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion |
abstract |
Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the damage and multiaxial creep evolution process. The results show that the evolution trends of creep deflection and strain with three stages are similar. During deformation, apparent damage localization is observed. The maximum strain and damage also occurred in the necking region due to the stress concentration. Thus, a critical damage value is proposed for service-exposed Cr5Mo in this study. In the primary creep stage, a tensile deformation is observed at the lower surface and a compression deformation is observed at the upper surface. Subsequently, the stress triaxiality tends to be constant in the second creep stage. Thus, steady creep parameters of small punch test can be used to replace traditional creep results in the creep properties analysis of in-service components. Finally, the multiaxial creep and damage evolution characteristics of the small punch creep specimen are obtained. |
abstractGer |
Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the damage and multiaxial creep evolution process. The results show that the evolution trends of creep deflection and strain with three stages are similar. During deformation, apparent damage localization is observed. The maximum strain and damage also occurred in the necking region due to the stress concentration. Thus, a critical damage value is proposed for service-exposed Cr5Mo in this study. In the primary creep stage, a tensile deformation is observed at the lower surface and a compression deformation is observed at the upper surface. Subsequently, the stress triaxiality tends to be constant in the second creep stage. Thus, steady creep parameters of small punch test can be used to replace traditional creep results in the creep properties analysis of in-service components. Finally, the multiaxial creep and damage evolution characteristics of the small punch creep specimen are obtained. |
abstract_unstemmed |
Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the damage and multiaxial creep evolution process. The results show that the evolution trends of creep deflection and strain with three stages are similar. During deformation, apparent damage localization is observed. The maximum strain and damage also occurred in the necking region due to the stress concentration. Thus, a critical damage value is proposed for service-exposed Cr5Mo in this study. In the primary creep stage, a tensile deformation is observed at the lower surface and a compression deformation is observed at the upper surface. Subsequently, the stress triaxiality tends to be constant in the second creep stage. Thus, steady creep parameters of small punch test can be used to replace traditional creep results in the creep properties analysis of in-service components. Finally, the multiaxial creep and damage evolution characteristics of the small punch creep specimen are obtained. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion |
remote_bool |
true |
author2 |
Zheng, Yangyan Ling, Xiang |
author2Str |
Zheng, Yangyan Ling, Xiang |
ppnlink |
320608697 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.engfailanal.2018.04.023 |
up_date |
2024-07-06T20:41:50.345Z |
_version_ |
1803863730784567296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003756327</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524161506.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230501s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engfailanal.2018.04.023</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003756327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1350-6307(18)30111-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Sisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Experiment and finite element analysis were performed in this study to estimate the deformation characteristics of small punch creep test. Considering the disadvantage of the traditional model owing to numerous unknown parameters, ductility exhaustion model was introduced and used to estimate the damage and multiaxial creep evolution process. The results show that the evolution trends of creep deflection and strain with three stages are similar. During deformation, apparent damage localization is observed. The maximum strain and damage also occurred in the necking region due to the stress concentration. Thus, a critical damage value is proposed for service-exposed Cr5Mo in this study. In the primary creep stage, a tensile deformation is observed at the lower surface and a compression deformation is observed at the upper surface. Subsequently, the stress triaxiality tends to be constant in the second creep stage. Thus, steady creep parameters of small punch test can be used to replace traditional creep results in the creep properties analysis of in-service components. Finally, the multiaxial creep and damage evolution characteristics of the small punch creep specimen are obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiaxial deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small punch creep test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Yangyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ling, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering failure analysis</subfield><subfield code="d">Oxford [u.a.] : Elsevier Science, 1994</subfield><subfield code="g">91, Seite 99-107</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320608697</subfield><subfield code="w">(DE-600)2021082-6</subfield><subfield code="w">(DE-576)120883619</subfield><subfield code="x">1350-6307</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">pages:99-107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="h">99-107</subfield></datafield></record></collection>
|
score |
7.4012613 |