Mechanical behavior of sintered submicron glass fiber mats
The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at dif...
Ausführliche Beschreibung
Autor*in: |
An, Seongpil [verfasserIn] Yarin, Alexander L. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Fiber-reinforced polymer (FRP) composite |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of mechanical sciences - Amsterdam [u.a.] : Elsevier Science, 1960, 170 |
---|---|
Übergeordnetes Werk: |
volume:170 |
DOI / URN: |
10.1016/j.ijmecsci.2019.105354 |
---|
Katalog-ID: |
ELV003763773 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003763773 | ||
003 | DE-627 | ||
005 | 20230524150327.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230501s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijmecsci.2019.105354 |2 doi | |
035 | |a (DE-627)ELV003763773 | ||
035 | |a (ELSEVIER)S0020-7403(19)33219-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 50.31 |2 bkl | ||
084 | |a 50.33 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a An, Seongpil |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mechanical behavior of sintered submicron glass fiber mats |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at different temperatures and their mechanical properties explored by tensile testing. Here, we report for the first time that the mechanical behavior of ultra-thin glass fiber mats after sintering can be maintained or even enhanced, contrary to the conventional belief derived from the experience with thick glass fiber mats. For one type of the mats explored in the present work, a more than 120% increase in the value of Young's modulus after heat treatment at the annealing temperature of 500 °C was observed. The friction forces and unique percolative skeleton structure of the present glass fiber mats after sintering are presumably enhanced, which facilitate the enhanced mechanical properties while the annealing temperature increases. The mechanical behavior is clearly affected by the detailed microstructure and architecture of each type of the glass fiber mats. The macroscopic glass fibers embedded in the mats of one type diminished the thermal expansion, which manifested itself by practically constant mechanical properties independent of heat-treatment temperature. These bundled fibers also were the sites where multiple minor fractures before the catastrophic specimen fracture originated, which enhanced brittleness and, accordingly, diminished the fracture toughness in comparison with that of the mats without such bundled fibers. Furthermore, a theoretical mode developed here to evaluate the sintering time of macro - and microscopic glass fibers, agrees well with the experimental results with the viscosity of glass fibers ranging from 1010.6 to 1011.6 Pa s. | ||
650 | 4 | |a Fiber-reinforced polymer (FRP) composite | |
650 | 4 | |a Ultra-thin glass fiber matrix | |
650 | 4 | |a Mechanical properties of glass fibers | |
650 | 4 | |a Sintering | |
700 | 1 | |a Yarin, Alexander L. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of mechanical sciences |d Amsterdam [u.a.] : Elsevier Science, 1960 |g 170 |h Online-Ressource |w (DE-627)306586223 |w (DE-600)1498168-3 |w (DE-576)259270954 |7 nnns |
773 | 1 | 8 | |g volume:170 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.31 |j Technische Mechanik |
936 | b | k | |a 50.33 |j Technische Strömungsmechanik |
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 170 |
author_variant |
s a sa a l y al aly |
---|---|
matchkey_str |
anseongpilyarinalexanderl:2019----:ehncleairfitrdumco |
hierarchy_sort_str |
2019 |
bklnumber |
50.31 50.33 50.38 |
publishDate |
2019 |
allfields |
10.1016/j.ijmecsci.2019.105354 doi (DE-627)ELV003763773 (ELSEVIER)S0020-7403(19)33219-9 DE-627 ger DE-627 rda eng 530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl An, Seongpil verfasserin aut Mechanical behavior of sintered submicron glass fiber mats 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at different temperatures and their mechanical properties explored by tensile testing. Here, we report for the first time that the mechanical behavior of ultra-thin glass fiber mats after sintering can be maintained or even enhanced, contrary to the conventional belief derived from the experience with thick glass fiber mats. For one type of the mats explored in the present work, a more than 120% increase in the value of Young's modulus after heat treatment at the annealing temperature of 500 °C was observed. The friction forces and unique percolative skeleton structure of the present glass fiber mats after sintering are presumably enhanced, which facilitate the enhanced mechanical properties while the annealing temperature increases. The mechanical behavior is clearly affected by the detailed microstructure and architecture of each type of the glass fiber mats. The macroscopic glass fibers embedded in the mats of one type diminished the thermal expansion, which manifested itself by practically constant mechanical properties independent of heat-treatment temperature. These bundled fibers also were the sites where multiple minor fractures before the catastrophic specimen fracture originated, which enhanced brittleness and, accordingly, diminished the fracture toughness in comparison with that of the mats without such bundled fibers. Furthermore, a theoretical mode developed here to evaluate the sintering time of macro - and microscopic glass fibers, agrees well with the experimental results with the viscosity of glass fibers ranging from 1010.6 to 1011.6 Pa s. Fiber-reinforced polymer (FRP) composite Ultra-thin glass fiber matrix Mechanical properties of glass fibers Sintering Yarin, Alexander L. verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 170 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:170 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 50.33 Technische Strömungsmechanik 50.38 Technische Thermodynamik AR 170 |
spelling |
10.1016/j.ijmecsci.2019.105354 doi (DE-627)ELV003763773 (ELSEVIER)S0020-7403(19)33219-9 DE-627 ger DE-627 rda eng 530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl An, Seongpil verfasserin aut Mechanical behavior of sintered submicron glass fiber mats 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at different temperatures and their mechanical properties explored by tensile testing. Here, we report for the first time that the mechanical behavior of ultra-thin glass fiber mats after sintering can be maintained or even enhanced, contrary to the conventional belief derived from the experience with thick glass fiber mats. For one type of the mats explored in the present work, a more than 120% increase in the value of Young's modulus after heat treatment at the annealing temperature of 500 °C was observed. The friction forces and unique percolative skeleton structure of the present glass fiber mats after sintering are presumably enhanced, which facilitate the enhanced mechanical properties while the annealing temperature increases. The mechanical behavior is clearly affected by the detailed microstructure and architecture of each type of the glass fiber mats. The macroscopic glass fibers embedded in the mats of one type diminished the thermal expansion, which manifested itself by practically constant mechanical properties independent of heat-treatment temperature. These bundled fibers also were the sites where multiple minor fractures before the catastrophic specimen fracture originated, which enhanced brittleness and, accordingly, diminished the fracture toughness in comparison with that of the mats without such bundled fibers. Furthermore, a theoretical mode developed here to evaluate the sintering time of macro - and microscopic glass fibers, agrees well with the experimental results with the viscosity of glass fibers ranging from 1010.6 to 1011.6 Pa s. Fiber-reinforced polymer (FRP) composite Ultra-thin glass fiber matrix Mechanical properties of glass fibers Sintering Yarin, Alexander L. verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 170 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:170 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 50.33 Technische Strömungsmechanik 50.38 Technische Thermodynamik AR 170 |
allfields_unstemmed |
10.1016/j.ijmecsci.2019.105354 doi (DE-627)ELV003763773 (ELSEVIER)S0020-7403(19)33219-9 DE-627 ger DE-627 rda eng 530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl An, Seongpil verfasserin aut Mechanical behavior of sintered submicron glass fiber mats 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at different temperatures and their mechanical properties explored by tensile testing. Here, we report for the first time that the mechanical behavior of ultra-thin glass fiber mats after sintering can be maintained or even enhanced, contrary to the conventional belief derived from the experience with thick glass fiber mats. For one type of the mats explored in the present work, a more than 120% increase in the value of Young's modulus after heat treatment at the annealing temperature of 500 °C was observed. The friction forces and unique percolative skeleton structure of the present glass fiber mats after sintering are presumably enhanced, which facilitate the enhanced mechanical properties while the annealing temperature increases. The mechanical behavior is clearly affected by the detailed microstructure and architecture of each type of the glass fiber mats. The macroscopic glass fibers embedded in the mats of one type diminished the thermal expansion, which manifested itself by practically constant mechanical properties independent of heat-treatment temperature. These bundled fibers also were the sites where multiple minor fractures before the catastrophic specimen fracture originated, which enhanced brittleness and, accordingly, diminished the fracture toughness in comparison with that of the mats without such bundled fibers. Furthermore, a theoretical mode developed here to evaluate the sintering time of macro - and microscopic glass fibers, agrees well with the experimental results with the viscosity of glass fibers ranging from 1010.6 to 1011.6 Pa s. Fiber-reinforced polymer (FRP) composite Ultra-thin glass fiber matrix Mechanical properties of glass fibers Sintering Yarin, Alexander L. verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 170 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:170 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 50.33 Technische Strömungsmechanik 50.38 Technische Thermodynamik AR 170 |
allfieldsGer |
10.1016/j.ijmecsci.2019.105354 doi (DE-627)ELV003763773 (ELSEVIER)S0020-7403(19)33219-9 DE-627 ger DE-627 rda eng 530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl An, Seongpil verfasserin aut Mechanical behavior of sintered submicron glass fiber mats 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at different temperatures and their mechanical properties explored by tensile testing. Here, we report for the first time that the mechanical behavior of ultra-thin glass fiber mats after sintering can be maintained or even enhanced, contrary to the conventional belief derived from the experience with thick glass fiber mats. For one type of the mats explored in the present work, a more than 120% increase in the value of Young's modulus after heat treatment at the annealing temperature of 500 °C was observed. The friction forces and unique percolative skeleton structure of the present glass fiber mats after sintering are presumably enhanced, which facilitate the enhanced mechanical properties while the annealing temperature increases. The mechanical behavior is clearly affected by the detailed microstructure and architecture of each type of the glass fiber mats. The macroscopic glass fibers embedded in the mats of one type diminished the thermal expansion, which manifested itself by practically constant mechanical properties independent of heat-treatment temperature. These bundled fibers also were the sites where multiple minor fractures before the catastrophic specimen fracture originated, which enhanced brittleness and, accordingly, diminished the fracture toughness in comparison with that of the mats without such bundled fibers. Furthermore, a theoretical mode developed here to evaluate the sintering time of macro - and microscopic glass fibers, agrees well with the experimental results with the viscosity of glass fibers ranging from 1010.6 to 1011.6 Pa s. Fiber-reinforced polymer (FRP) composite Ultra-thin glass fiber matrix Mechanical properties of glass fibers Sintering Yarin, Alexander L. verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 170 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:170 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 50.33 Technische Strömungsmechanik 50.38 Technische Thermodynamik AR 170 |
allfieldsSound |
10.1016/j.ijmecsci.2019.105354 doi (DE-627)ELV003763773 (ELSEVIER)S0020-7403(19)33219-9 DE-627 ger DE-627 rda eng 530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl An, Seongpil verfasserin aut Mechanical behavior of sintered submicron glass fiber mats 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at different temperatures and their mechanical properties explored by tensile testing. Here, we report for the first time that the mechanical behavior of ultra-thin glass fiber mats after sintering can be maintained or even enhanced, contrary to the conventional belief derived from the experience with thick glass fiber mats. For one type of the mats explored in the present work, a more than 120% increase in the value of Young's modulus after heat treatment at the annealing temperature of 500 °C was observed. The friction forces and unique percolative skeleton structure of the present glass fiber mats after sintering are presumably enhanced, which facilitate the enhanced mechanical properties while the annealing temperature increases. The mechanical behavior is clearly affected by the detailed microstructure and architecture of each type of the glass fiber mats. The macroscopic glass fibers embedded in the mats of one type diminished the thermal expansion, which manifested itself by practically constant mechanical properties independent of heat-treatment temperature. These bundled fibers also were the sites where multiple minor fractures before the catastrophic specimen fracture originated, which enhanced brittleness and, accordingly, diminished the fracture toughness in comparison with that of the mats without such bundled fibers. Furthermore, a theoretical mode developed here to evaluate the sintering time of macro - and microscopic glass fibers, agrees well with the experimental results with the viscosity of glass fibers ranging from 1010.6 to 1011.6 Pa s. Fiber-reinforced polymer (FRP) composite Ultra-thin glass fiber matrix Mechanical properties of glass fibers Sintering Yarin, Alexander L. verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 170 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:170 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 50.33 Technische Strömungsmechanik 50.38 Technische Thermodynamik AR 170 |
language |
English |
source |
Enthalten in International journal of mechanical sciences 170 volume:170 |
sourceStr |
Enthalten in International journal of mechanical sciences 170 volume:170 |
format_phy_str_mv |
Article |
bklname |
Technische Mechanik Technische Strömungsmechanik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Fiber-reinforced polymer (FRP) composite Ultra-thin glass fiber matrix Mechanical properties of glass fibers Sintering |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of mechanical sciences |
authorswithroles_txt_mv |
An, Seongpil @@aut@@ Yarin, Alexander L. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
306586223 |
dewey-sort |
3530 |
id |
ELV003763773 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003763773</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150327.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230501s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijmecsci.2019.105354</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003763773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7403(19)33219-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">An, Seongpil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanical behavior of sintered submicron glass fiber mats</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at different temperatures and their mechanical properties explored by tensile testing. Here, we report for the first time that the mechanical behavior of ultra-thin glass fiber mats after sintering can be maintained or even enhanced, contrary to the conventional belief derived from the experience with thick glass fiber mats. For one type of the mats explored in the present work, a more than 120% increase in the value of Young's modulus after heat treatment at the annealing temperature of 500 °C was observed. The friction forces and unique percolative skeleton structure of the present glass fiber mats after sintering are presumably enhanced, which facilitate the enhanced mechanical properties while the annealing temperature increases. The mechanical behavior is clearly affected by the detailed microstructure and architecture of each type of the glass fiber mats. The macroscopic glass fibers embedded in the mats of one type diminished the thermal expansion, which manifested itself by practically constant mechanical properties independent of heat-treatment temperature. These bundled fibers also were the sites where multiple minor fractures before the catastrophic specimen fracture originated, which enhanced brittleness and, accordingly, diminished the fracture toughness in comparison with that of the mats without such bundled fibers. Furthermore, a theoretical mode developed here to evaluate the sintering time of macro - and microscopic glass fibers, agrees well with the experimental results with the viscosity of glass fibers ranging from 1010.6 to 1011.6 Pa s.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber-reinforced polymer (FRP) composite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultra-thin glass fiber matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties of glass fibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sintering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yarin, Alexander L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of mechanical sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1960</subfield><subfield code="g">170</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306586223</subfield><subfield code="w">(DE-600)1498168-3</subfield><subfield code="w">(DE-576)259270954</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">170</subfield></datafield></record></collection>
|
author |
An, Seongpil |
spellingShingle |
An, Seongpil ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Fiber-reinforced polymer (FRP) composite misc Ultra-thin glass fiber matrix misc Mechanical properties of glass fibers misc Sintering Mechanical behavior of sintered submicron glass fiber mats |
authorStr |
An, Seongpil |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306586223 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl Mechanical behavior of sintered submicron glass fiber mats Fiber-reinforced polymer (FRP) composite Ultra-thin glass fiber matrix Mechanical properties of glass fibers Sintering |
topic |
ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Fiber-reinforced polymer (FRP) composite misc Ultra-thin glass fiber matrix misc Mechanical properties of glass fibers misc Sintering |
topic_unstemmed |
ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Fiber-reinforced polymer (FRP) composite misc Ultra-thin glass fiber matrix misc Mechanical properties of glass fibers misc Sintering |
topic_browse |
ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Fiber-reinforced polymer (FRP) composite misc Ultra-thin glass fiber matrix misc Mechanical properties of glass fibers misc Sintering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of mechanical sciences |
hierarchy_parent_id |
306586223 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of mechanical sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 |
title |
Mechanical behavior of sintered submicron glass fiber mats |
ctrlnum |
(DE-627)ELV003763773 (ELSEVIER)S0020-7403(19)33219-9 |
title_full |
Mechanical behavior of sintered submicron glass fiber mats |
author_sort |
An, Seongpil |
journal |
International journal of mechanical sciences |
journalStr |
International journal of mechanical sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
author_browse |
An, Seongpil Yarin, Alexander L. |
container_volume |
170 |
class |
530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
An, Seongpil |
doi_str_mv |
10.1016/j.ijmecsci.2019.105354 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
mechanical behavior of sintered submicron glass fiber mats |
title_auth |
Mechanical behavior of sintered submicron glass fiber mats |
abstract |
The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at different temperatures and their mechanical properties explored by tensile testing. Here, we report for the first time that the mechanical behavior of ultra-thin glass fiber mats after sintering can be maintained or even enhanced, contrary to the conventional belief derived from the experience with thick glass fiber mats. For one type of the mats explored in the present work, a more than 120% increase in the value of Young's modulus after heat treatment at the annealing temperature of 500 °C was observed. The friction forces and unique percolative skeleton structure of the present glass fiber mats after sintering are presumably enhanced, which facilitate the enhanced mechanical properties while the annealing temperature increases. The mechanical behavior is clearly affected by the detailed microstructure and architecture of each type of the glass fiber mats. The macroscopic glass fibers embedded in the mats of one type diminished the thermal expansion, which manifested itself by practically constant mechanical properties independent of heat-treatment temperature. These bundled fibers also were the sites where multiple minor fractures before the catastrophic specimen fracture originated, which enhanced brittleness and, accordingly, diminished the fracture toughness in comparison with that of the mats without such bundled fibers. Furthermore, a theoretical mode developed here to evaluate the sintering time of macro - and microscopic glass fibers, agrees well with the experimental results with the viscosity of glass fibers ranging from 1010.6 to 1011.6 Pa s. |
abstractGer |
The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at different temperatures and their mechanical properties explored by tensile testing. Here, we report for the first time that the mechanical behavior of ultra-thin glass fiber mats after sintering can be maintained or even enhanced, contrary to the conventional belief derived from the experience with thick glass fiber mats. For one type of the mats explored in the present work, a more than 120% increase in the value of Young's modulus after heat treatment at the annealing temperature of 500 °C was observed. The friction forces and unique percolative skeleton structure of the present glass fiber mats after sintering are presumably enhanced, which facilitate the enhanced mechanical properties while the annealing temperature increases. The mechanical behavior is clearly affected by the detailed microstructure and architecture of each type of the glass fiber mats. The macroscopic glass fibers embedded in the mats of one type diminished the thermal expansion, which manifested itself by practically constant mechanical properties independent of heat-treatment temperature. These bundled fibers also were the sites where multiple minor fractures before the catastrophic specimen fracture originated, which enhanced brittleness and, accordingly, diminished the fracture toughness in comparison with that of the mats without such bundled fibers. Furthermore, a theoretical mode developed here to evaluate the sintering time of macro - and microscopic glass fibers, agrees well with the experimental results with the viscosity of glass fibers ranging from 1010.6 to 1011.6 Pa s. |
abstract_unstemmed |
The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at different temperatures and their mechanical properties explored by tensile testing. Here, we report for the first time that the mechanical behavior of ultra-thin glass fiber mats after sintering can be maintained or even enhanced, contrary to the conventional belief derived from the experience with thick glass fiber mats. For one type of the mats explored in the present work, a more than 120% increase in the value of Young's modulus after heat treatment at the annealing temperature of 500 °C was observed. The friction forces and unique percolative skeleton structure of the present glass fiber mats after sintering are presumably enhanced, which facilitate the enhanced mechanical properties while the annealing temperature increases. The mechanical behavior is clearly affected by the detailed microstructure and architecture of each type of the glass fiber mats. The macroscopic glass fibers embedded in the mats of one type diminished the thermal expansion, which manifested itself by practically constant mechanical properties independent of heat-treatment temperature. These bundled fibers also were the sites where multiple minor fractures before the catastrophic specimen fracture originated, which enhanced brittleness and, accordingly, diminished the fracture toughness in comparison with that of the mats without such bundled fibers. Furthermore, a theoretical mode developed here to evaluate the sintering time of macro - and microscopic glass fibers, agrees well with the experimental results with the viscosity of glass fibers ranging from 1010.6 to 1011.6 Pa s. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Mechanical behavior of sintered submicron glass fiber mats |
remote_bool |
true |
author2 |
Yarin, Alexander L. |
author2Str |
Yarin, Alexander L. |
ppnlink |
306586223 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijmecsci.2019.105354 |
up_date |
2024-07-06T20:43:22.649Z |
_version_ |
1803863827573374976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003763773</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150327.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230501s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijmecsci.2019.105354</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003763773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7403(19)33219-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">An, Seongpil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanical behavior of sintered submicron glass fiber mats</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The mechanical behavior of sintered glass fiber mats of two different types with fiber diameters in the submicrometer range is studied experimentally and theoretically. Microscopically-entangled and macroscopically-oriented glass fibers in the mats were mutually sintered during heat treatment at different temperatures and their mechanical properties explored by tensile testing. Here, we report for the first time that the mechanical behavior of ultra-thin glass fiber mats after sintering can be maintained or even enhanced, contrary to the conventional belief derived from the experience with thick glass fiber mats. For one type of the mats explored in the present work, a more than 120% increase in the value of Young's modulus after heat treatment at the annealing temperature of 500 °C was observed. The friction forces and unique percolative skeleton structure of the present glass fiber mats after sintering are presumably enhanced, which facilitate the enhanced mechanical properties while the annealing temperature increases. The mechanical behavior is clearly affected by the detailed microstructure and architecture of each type of the glass fiber mats. The macroscopic glass fibers embedded in the mats of one type diminished the thermal expansion, which manifested itself by practically constant mechanical properties independent of heat-treatment temperature. These bundled fibers also were the sites where multiple minor fractures before the catastrophic specimen fracture originated, which enhanced brittleness and, accordingly, diminished the fracture toughness in comparison with that of the mats without such bundled fibers. Furthermore, a theoretical mode developed here to evaluate the sintering time of macro - and microscopic glass fibers, agrees well with the experimental results with the viscosity of glass fibers ranging from 1010.6 to 1011.6 Pa s.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber-reinforced polymer (FRP) composite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultra-thin glass fiber matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical properties of glass fibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sintering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yarin, Alexander L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of mechanical sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1960</subfield><subfield code="g">170</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306586223</subfield><subfield code="w">(DE-600)1498168-3</subfield><subfield code="w">(DE-576)259270954</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">170</subfield></datafield></record></collection>
|
score |
7.402936 |