Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model
Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located arou...
Ausführliche Beschreibung
Autor*in: |
Zhang, Qingyuan [verfasserIn] Yao, Tian [verfasserIn] Huemmrich, K. Fred [verfasserIn] Middleton, Elizabeth M. [verfasserIn] Lyapustin, Alexei [verfasserIn] Wang, Yujie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
Vegetation cover fraction (VGCF) |
---|
Übergeordnetes Werk: |
Enthalten in: Remote sensing of environment - Amsterdam [u.a.] : Elsevier Science, 1969, 240 |
---|---|
Übergeordnetes Werk: |
volume:240 |
DOI / URN: |
10.1016/j.rse.2020.111677 |
---|
Katalog-ID: |
ELV003845079 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003845079 | ||
003 | DE-627 | ||
005 | 20230524132321.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230501s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.rse.2020.111677 |2 doi | |
035 | |a (DE-627)ELV003845079 | ||
035 | |a (ELSEVIER)S0034-4257(20)30046-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 050 |a 550 |q DE-600 |
084 | |a 38.03 |2 bkl | ||
084 | |a 43.03 |2 bkl | ||
084 | |a 74.41 |2 bkl | ||
100 | 1 | |a Zhang, Qingyuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located around Utqiaġvik (formerly Barrow) of Alaska with the Moderate Resolution Imaging Spectrometer (MODIS) images in 2001–2014. Empirical vegetation indices, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), the index of near infrared of vegetation (NIRv), and modified EVI (EVI2), have been used to monitor vegetation. Normalized difference snow index (NDSI) has been widely applied to monitor snow. The vegetation cover fraction (VGCF), the soil cover fraction (SOILCF), the snow cover fraction (SNOWCF), the surface water body cover fraction (WaterBodyCF), the fractional absorption of photosynthetically active radiation (PAR) by vegetation chlorophyll (fAPARchl), the fractional absorption of PAR by non-chlorophyll components of the vegetation (fAPARnon-chl), and the fractional absorption of PAR by the entire canopy (fAPARcanopy) are retrieved with the MODIS images and a coupled Leaf-Vegetation-Soil-Snow-Surface water body radiative transfer model, LVS3. The vegetation indices (NDVI, EVI, EVI2 and NIRv) differ from VGCF, fAPARchl, fAPARnon-chl, and fAPARcanopy. In addition to vegetation, we find that soil, snow and surface water also have impacts on vegetation indices NDVI, EVI (EVI2), and NIRv. Presence of snow makes lower the observed values of NDVI, EVI2 and NIRv. After snowmelt is gone, the vegetation indices (NDVI, EVI, EVI2 and NIRv) linearly decrease with SOILCF and WaterBodyCF, and WaterBodyCF has stronger impacts on these vegetation indices than SOILCF. The relationship between EVI and snow is complicated. NDSI non-linearly increases with SNOWCF, but linearly increases with sum of SNOWCF and WaterBodyCF (sum = 0.5893 × NDSI +0.4342, R2 = 0.976). NDSI linearly decreases with VGCF, and the relationship between NDSI and SOILCF is complex. Retrievals of VGCF, fAPARchl, fAPARnon-chl and fAPARcanopy with the LVS3 model provide alternatives for vegetation monitoring and ecological modeling. | ||
650 | 4 | |a Arctic tundra | |
650 | 4 | |a Vegetation cover fraction (VGCF) | |
650 | 4 | |a Soil cover fraction (SOILCF) | |
650 | 4 | |a Snow cover fraction (SNOWCF) | |
650 | 4 | |a Surface water body cover fraction (WaterBodyCF) | |
650 | 4 | |a LVS3 | |
650 | 4 | |a MODIS | |
650 | 4 | |a Hyperion | |
650 | 4 | |a NDVI | |
650 | 4 | |a EVI (EVI2) | |
650 | 4 | |a NIR | |
650 | 4 | |a NDSI | |
700 | 1 | |a Yao, Tian |e verfasserin |4 aut | |
700 | 1 | |a Huemmrich, K. Fred |e verfasserin |4 aut | |
700 | 1 | |a Middleton, Elizabeth M. |e verfasserin |4 aut | |
700 | 1 | |a Lyapustin, Alexei |e verfasserin |4 aut | |
700 | 1 | |a Wang, Yujie |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Remote sensing of environment |d Amsterdam [u.a.] : Elsevier Science, 1969 |g 240 |h Online-Ressource |w (DE-627)306591324 |w (DE-600)1498713-2 |w (DE-576)098330268 |x 1879-0704 |7 nnns |
773 | 1 | 8 | |g volume:240 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.03 |j Methoden und Techniken der Geowissenschaften |
936 | b | k | |a 43.03 |j Methoden der Umweltforschung und des Umweltschutzes |
936 | b | k | |a 74.41 |j Luftaufnahmen |j Photogrammetrie |
951 | |a AR | ||
952 | |d 240 |
author_variant |
q z qz t y ty k f h kf kfh e m m em emm a l al y w yw |
---|---|
matchkey_str |
article:18790704:2020----::vlaigmatososraeaesiadeeainnmiiavgttoadnwniefrhuqaitn |
hierarchy_sort_str |
2020 |
bklnumber |
38.03 43.03 74.41 |
publishDate |
2020 |
allfields |
10.1016/j.rse.2020.111677 doi (DE-627)ELV003845079 (ELSEVIER)S0034-4257(20)30046-8 DE-627 ger DE-627 rda eng 050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Zhang, Qingyuan verfasserin aut Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located around Utqiaġvik (formerly Barrow) of Alaska with the Moderate Resolution Imaging Spectrometer (MODIS) images in 2001–2014. Empirical vegetation indices, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), the index of near infrared of vegetation (NIRv), and modified EVI (EVI2), have been used to monitor vegetation. Normalized difference snow index (NDSI) has been widely applied to monitor snow. The vegetation cover fraction (VGCF), the soil cover fraction (SOILCF), the snow cover fraction (SNOWCF), the surface water body cover fraction (WaterBodyCF), the fractional absorption of photosynthetically active radiation (PAR) by vegetation chlorophyll (fAPARchl), the fractional absorption of PAR by non-chlorophyll components of the vegetation (fAPARnon-chl), and the fractional absorption of PAR by the entire canopy (fAPARcanopy) are retrieved with the MODIS images and a coupled Leaf-Vegetation-Soil-Snow-Surface water body radiative transfer model, LVS3. The vegetation indices (NDVI, EVI, EVI2 and NIRv) differ from VGCF, fAPARchl, fAPARnon-chl, and fAPARcanopy. In addition to vegetation, we find that soil, snow and surface water also have impacts on vegetation indices NDVI, EVI (EVI2), and NIRv. Presence of snow makes lower the observed values of NDVI, EVI2 and NIRv. After snowmelt is gone, the vegetation indices (NDVI, EVI, EVI2 and NIRv) linearly decrease with SOILCF and WaterBodyCF, and WaterBodyCF has stronger impacts on these vegetation indices than SOILCF. The relationship between EVI and snow is complicated. NDSI non-linearly increases with SNOWCF, but linearly increases with sum of SNOWCF and WaterBodyCF (sum = 0.5893 × NDSI +0.4342, R2 = 0.976). NDSI linearly decreases with VGCF, and the relationship between NDSI and SOILCF is complex. Retrievals of VGCF, fAPARchl, fAPARnon-chl and fAPARcanopy with the LVS3 model provide alternatives for vegetation monitoring and ecological modeling. Arctic tundra Vegetation cover fraction (VGCF) Soil cover fraction (SOILCF) Snow cover fraction (SNOWCF) Surface water body cover fraction (WaterBodyCF) LVS3 MODIS Hyperion NDVI EVI (EVI2) NIR NDSI Yao, Tian verfasserin aut Huemmrich, K. Fred verfasserin aut Middleton, Elizabeth M. verfasserin aut Lyapustin, Alexei verfasserin aut Wang, Yujie verfasserin aut Enthalten in Remote sensing of environment Amsterdam [u.a.] : Elsevier Science, 1969 240 Online-Ressource (DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 1879-0704 nnns volume:240 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.03 Methoden und Techniken der Geowissenschaften 43.03 Methoden der Umweltforschung und des Umweltschutzes 74.41 Luftaufnahmen Photogrammetrie AR 240 |
spelling |
10.1016/j.rse.2020.111677 doi (DE-627)ELV003845079 (ELSEVIER)S0034-4257(20)30046-8 DE-627 ger DE-627 rda eng 050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Zhang, Qingyuan verfasserin aut Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located around Utqiaġvik (formerly Barrow) of Alaska with the Moderate Resolution Imaging Spectrometer (MODIS) images in 2001–2014. Empirical vegetation indices, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), the index of near infrared of vegetation (NIRv), and modified EVI (EVI2), have been used to monitor vegetation. Normalized difference snow index (NDSI) has been widely applied to monitor snow. The vegetation cover fraction (VGCF), the soil cover fraction (SOILCF), the snow cover fraction (SNOWCF), the surface water body cover fraction (WaterBodyCF), the fractional absorption of photosynthetically active radiation (PAR) by vegetation chlorophyll (fAPARchl), the fractional absorption of PAR by non-chlorophyll components of the vegetation (fAPARnon-chl), and the fractional absorption of PAR by the entire canopy (fAPARcanopy) are retrieved with the MODIS images and a coupled Leaf-Vegetation-Soil-Snow-Surface water body radiative transfer model, LVS3. The vegetation indices (NDVI, EVI, EVI2 and NIRv) differ from VGCF, fAPARchl, fAPARnon-chl, and fAPARcanopy. In addition to vegetation, we find that soil, snow and surface water also have impacts on vegetation indices NDVI, EVI (EVI2), and NIRv. Presence of snow makes lower the observed values of NDVI, EVI2 and NIRv. After snowmelt is gone, the vegetation indices (NDVI, EVI, EVI2 and NIRv) linearly decrease with SOILCF and WaterBodyCF, and WaterBodyCF has stronger impacts on these vegetation indices than SOILCF. The relationship between EVI and snow is complicated. NDSI non-linearly increases with SNOWCF, but linearly increases with sum of SNOWCF and WaterBodyCF (sum = 0.5893 × NDSI +0.4342, R2 = 0.976). NDSI linearly decreases with VGCF, and the relationship between NDSI and SOILCF is complex. Retrievals of VGCF, fAPARchl, fAPARnon-chl and fAPARcanopy with the LVS3 model provide alternatives for vegetation monitoring and ecological modeling. Arctic tundra Vegetation cover fraction (VGCF) Soil cover fraction (SOILCF) Snow cover fraction (SNOWCF) Surface water body cover fraction (WaterBodyCF) LVS3 MODIS Hyperion NDVI EVI (EVI2) NIR NDSI Yao, Tian verfasserin aut Huemmrich, K. Fred verfasserin aut Middleton, Elizabeth M. verfasserin aut Lyapustin, Alexei verfasserin aut Wang, Yujie verfasserin aut Enthalten in Remote sensing of environment Amsterdam [u.a.] : Elsevier Science, 1969 240 Online-Ressource (DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 1879-0704 nnns volume:240 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.03 Methoden und Techniken der Geowissenschaften 43.03 Methoden der Umweltforschung und des Umweltschutzes 74.41 Luftaufnahmen Photogrammetrie AR 240 |
allfields_unstemmed |
10.1016/j.rse.2020.111677 doi (DE-627)ELV003845079 (ELSEVIER)S0034-4257(20)30046-8 DE-627 ger DE-627 rda eng 050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Zhang, Qingyuan verfasserin aut Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located around Utqiaġvik (formerly Barrow) of Alaska with the Moderate Resolution Imaging Spectrometer (MODIS) images in 2001–2014. Empirical vegetation indices, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), the index of near infrared of vegetation (NIRv), and modified EVI (EVI2), have been used to monitor vegetation. Normalized difference snow index (NDSI) has been widely applied to monitor snow. The vegetation cover fraction (VGCF), the soil cover fraction (SOILCF), the snow cover fraction (SNOWCF), the surface water body cover fraction (WaterBodyCF), the fractional absorption of photosynthetically active radiation (PAR) by vegetation chlorophyll (fAPARchl), the fractional absorption of PAR by non-chlorophyll components of the vegetation (fAPARnon-chl), and the fractional absorption of PAR by the entire canopy (fAPARcanopy) are retrieved with the MODIS images and a coupled Leaf-Vegetation-Soil-Snow-Surface water body radiative transfer model, LVS3. The vegetation indices (NDVI, EVI, EVI2 and NIRv) differ from VGCF, fAPARchl, fAPARnon-chl, and fAPARcanopy. In addition to vegetation, we find that soil, snow and surface water also have impacts on vegetation indices NDVI, EVI (EVI2), and NIRv. Presence of snow makes lower the observed values of NDVI, EVI2 and NIRv. After snowmelt is gone, the vegetation indices (NDVI, EVI, EVI2 and NIRv) linearly decrease with SOILCF and WaterBodyCF, and WaterBodyCF has stronger impacts on these vegetation indices than SOILCF. The relationship between EVI and snow is complicated. NDSI non-linearly increases with SNOWCF, but linearly increases with sum of SNOWCF and WaterBodyCF (sum = 0.5893 × NDSI +0.4342, R2 = 0.976). NDSI linearly decreases with VGCF, and the relationship between NDSI and SOILCF is complex. Retrievals of VGCF, fAPARchl, fAPARnon-chl and fAPARcanopy with the LVS3 model provide alternatives for vegetation monitoring and ecological modeling. Arctic tundra Vegetation cover fraction (VGCF) Soil cover fraction (SOILCF) Snow cover fraction (SNOWCF) Surface water body cover fraction (WaterBodyCF) LVS3 MODIS Hyperion NDVI EVI (EVI2) NIR NDSI Yao, Tian verfasserin aut Huemmrich, K. Fred verfasserin aut Middleton, Elizabeth M. verfasserin aut Lyapustin, Alexei verfasserin aut Wang, Yujie verfasserin aut Enthalten in Remote sensing of environment Amsterdam [u.a.] : Elsevier Science, 1969 240 Online-Ressource (DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 1879-0704 nnns volume:240 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.03 Methoden und Techniken der Geowissenschaften 43.03 Methoden der Umweltforschung und des Umweltschutzes 74.41 Luftaufnahmen Photogrammetrie AR 240 |
allfieldsGer |
10.1016/j.rse.2020.111677 doi (DE-627)ELV003845079 (ELSEVIER)S0034-4257(20)30046-8 DE-627 ger DE-627 rda eng 050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Zhang, Qingyuan verfasserin aut Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located around Utqiaġvik (formerly Barrow) of Alaska with the Moderate Resolution Imaging Spectrometer (MODIS) images in 2001–2014. Empirical vegetation indices, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), the index of near infrared of vegetation (NIRv), and modified EVI (EVI2), have been used to monitor vegetation. Normalized difference snow index (NDSI) has been widely applied to monitor snow. The vegetation cover fraction (VGCF), the soil cover fraction (SOILCF), the snow cover fraction (SNOWCF), the surface water body cover fraction (WaterBodyCF), the fractional absorption of photosynthetically active radiation (PAR) by vegetation chlorophyll (fAPARchl), the fractional absorption of PAR by non-chlorophyll components of the vegetation (fAPARnon-chl), and the fractional absorption of PAR by the entire canopy (fAPARcanopy) are retrieved with the MODIS images and a coupled Leaf-Vegetation-Soil-Snow-Surface water body radiative transfer model, LVS3. The vegetation indices (NDVI, EVI, EVI2 and NIRv) differ from VGCF, fAPARchl, fAPARnon-chl, and fAPARcanopy. In addition to vegetation, we find that soil, snow and surface water also have impacts on vegetation indices NDVI, EVI (EVI2), and NIRv. Presence of snow makes lower the observed values of NDVI, EVI2 and NIRv. After snowmelt is gone, the vegetation indices (NDVI, EVI, EVI2 and NIRv) linearly decrease with SOILCF and WaterBodyCF, and WaterBodyCF has stronger impacts on these vegetation indices than SOILCF. The relationship between EVI and snow is complicated. NDSI non-linearly increases with SNOWCF, but linearly increases with sum of SNOWCF and WaterBodyCF (sum = 0.5893 × NDSI +0.4342, R2 = 0.976). NDSI linearly decreases with VGCF, and the relationship between NDSI and SOILCF is complex. Retrievals of VGCF, fAPARchl, fAPARnon-chl and fAPARcanopy with the LVS3 model provide alternatives for vegetation monitoring and ecological modeling. Arctic tundra Vegetation cover fraction (VGCF) Soil cover fraction (SOILCF) Snow cover fraction (SNOWCF) Surface water body cover fraction (WaterBodyCF) LVS3 MODIS Hyperion NDVI EVI (EVI2) NIR NDSI Yao, Tian verfasserin aut Huemmrich, K. Fred verfasserin aut Middleton, Elizabeth M. verfasserin aut Lyapustin, Alexei verfasserin aut Wang, Yujie verfasserin aut Enthalten in Remote sensing of environment Amsterdam [u.a.] : Elsevier Science, 1969 240 Online-Ressource (DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 1879-0704 nnns volume:240 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.03 Methoden und Techniken der Geowissenschaften 43.03 Methoden der Umweltforschung und des Umweltschutzes 74.41 Luftaufnahmen Photogrammetrie AR 240 |
allfieldsSound |
10.1016/j.rse.2020.111677 doi (DE-627)ELV003845079 (ELSEVIER)S0034-4257(20)30046-8 DE-627 ger DE-627 rda eng 050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Zhang, Qingyuan verfasserin aut Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located around Utqiaġvik (formerly Barrow) of Alaska with the Moderate Resolution Imaging Spectrometer (MODIS) images in 2001–2014. Empirical vegetation indices, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), the index of near infrared of vegetation (NIRv), and modified EVI (EVI2), have been used to monitor vegetation. Normalized difference snow index (NDSI) has been widely applied to monitor snow. The vegetation cover fraction (VGCF), the soil cover fraction (SOILCF), the snow cover fraction (SNOWCF), the surface water body cover fraction (WaterBodyCF), the fractional absorption of photosynthetically active radiation (PAR) by vegetation chlorophyll (fAPARchl), the fractional absorption of PAR by non-chlorophyll components of the vegetation (fAPARnon-chl), and the fractional absorption of PAR by the entire canopy (fAPARcanopy) are retrieved with the MODIS images and a coupled Leaf-Vegetation-Soil-Snow-Surface water body radiative transfer model, LVS3. The vegetation indices (NDVI, EVI, EVI2 and NIRv) differ from VGCF, fAPARchl, fAPARnon-chl, and fAPARcanopy. In addition to vegetation, we find that soil, snow and surface water also have impacts on vegetation indices NDVI, EVI (EVI2), and NIRv. Presence of snow makes lower the observed values of NDVI, EVI2 and NIRv. After snowmelt is gone, the vegetation indices (NDVI, EVI, EVI2 and NIRv) linearly decrease with SOILCF and WaterBodyCF, and WaterBodyCF has stronger impacts on these vegetation indices than SOILCF. The relationship between EVI and snow is complicated. NDSI non-linearly increases with SNOWCF, but linearly increases with sum of SNOWCF and WaterBodyCF (sum = 0.5893 × NDSI +0.4342, R2 = 0.976). NDSI linearly decreases with VGCF, and the relationship between NDSI and SOILCF is complex. Retrievals of VGCF, fAPARchl, fAPARnon-chl and fAPARcanopy with the LVS3 model provide alternatives for vegetation monitoring and ecological modeling. Arctic tundra Vegetation cover fraction (VGCF) Soil cover fraction (SOILCF) Snow cover fraction (SNOWCF) Surface water body cover fraction (WaterBodyCF) LVS3 MODIS Hyperion NDVI EVI (EVI2) NIR NDSI Yao, Tian verfasserin aut Huemmrich, K. Fred verfasserin aut Middleton, Elizabeth M. verfasserin aut Lyapustin, Alexei verfasserin aut Wang, Yujie verfasserin aut Enthalten in Remote sensing of environment Amsterdam [u.a.] : Elsevier Science, 1969 240 Online-Ressource (DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 1879-0704 nnns volume:240 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.03 Methoden und Techniken der Geowissenschaften 43.03 Methoden der Umweltforschung und des Umweltschutzes 74.41 Luftaufnahmen Photogrammetrie AR 240 |
language |
English |
source |
Enthalten in Remote sensing of environment 240 volume:240 |
sourceStr |
Enthalten in Remote sensing of environment 240 volume:240 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Geowissenschaften Methoden der Umweltforschung und des Umweltschutzes Luftaufnahmen Photogrammetrie |
institution |
findex.gbv.de |
topic_facet |
Arctic tundra Vegetation cover fraction (VGCF) Soil cover fraction (SOILCF) Snow cover fraction (SNOWCF) Surface water body cover fraction (WaterBodyCF) LVS3 MODIS Hyperion NDVI EVI (EVI2) NIR NDSI |
dewey-raw |
050 |
isfreeaccess_bool |
false |
container_title |
Remote sensing of environment |
authorswithroles_txt_mv |
Zhang, Qingyuan @@aut@@ Yao, Tian @@aut@@ Huemmrich, K. Fred @@aut@@ Middleton, Elizabeth M. @@aut@@ Lyapustin, Alexei @@aut@@ Wang, Yujie @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306591324 |
dewey-sort |
250 |
id |
ELV003845079 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003845079</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132321.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230501s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rse.2020.111677</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003845079</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0034-4257(20)30046-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Qingyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located around Utqiaġvik (formerly Barrow) of Alaska with the Moderate Resolution Imaging Spectrometer (MODIS) images in 2001–2014. Empirical vegetation indices, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), the index of near infrared of vegetation (NIRv), and modified EVI (EVI2), have been used to monitor vegetation. Normalized difference snow index (NDSI) has been widely applied to monitor snow. The vegetation cover fraction (VGCF), the soil cover fraction (SOILCF), the snow cover fraction (SNOWCF), the surface water body cover fraction (WaterBodyCF), the fractional absorption of photosynthetically active radiation (PAR) by vegetation chlorophyll (fAPARchl), the fractional absorption of PAR by non-chlorophyll components of the vegetation (fAPARnon-chl), and the fractional absorption of PAR by the entire canopy (fAPARcanopy) are retrieved with the MODIS images and a coupled Leaf-Vegetation-Soil-Snow-Surface water body radiative transfer model, LVS3. The vegetation indices (NDVI, EVI, EVI2 and NIRv) differ from VGCF, fAPARchl, fAPARnon-chl, and fAPARcanopy. In addition to vegetation, we find that soil, snow and surface water also have impacts on vegetation indices NDVI, EVI (EVI2), and NIRv. Presence of snow makes lower the observed values of NDVI, EVI2 and NIRv. After snowmelt is gone, the vegetation indices (NDVI, EVI, EVI2 and NIRv) linearly decrease with SOILCF and WaterBodyCF, and WaterBodyCF has stronger impacts on these vegetation indices than SOILCF. The relationship between EVI and snow is complicated. NDSI non-linearly increases with SNOWCF, but linearly increases with sum of SNOWCF and WaterBodyCF (sum = 0.5893 × NDSI +0.4342, R2 = 0.976). NDSI linearly decreases with VGCF, and the relationship between NDSI and SOILCF is complex. Retrievals of VGCF, fAPARchl, fAPARnon-chl and fAPARcanopy with the LVS3 model provide alternatives for vegetation monitoring and ecological modeling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arctic tundra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vegetation cover fraction (VGCF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil cover fraction (SOILCF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Snow cover fraction (SNOWCF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface water body cover fraction (WaterBodyCF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LVS3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MODIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDVI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EVI (EVI2)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NIR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDSI</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huemmrich, K. Fred</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Middleton, Elizabeth M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lyapustin, Alexei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yujie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Remote sensing of environment</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1969</subfield><subfield code="g">240</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591324</subfield><subfield code="w">(DE-600)1498713-2</subfield><subfield code="w">(DE-576)098330268</subfield><subfield code="x">1879-0704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:240</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.03</subfield><subfield code="j">Methoden und Techniken der Geowissenschaften</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.03</subfield><subfield code="j">Methoden der Umweltforschung und des Umweltschutzes</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">240</subfield></datafield></record></collection>
|
author |
Zhang, Qingyuan |
spellingShingle |
Zhang, Qingyuan ddc 050 bkl 38.03 bkl 43.03 bkl 74.41 misc Arctic tundra misc Vegetation cover fraction (VGCF) misc Soil cover fraction (SOILCF) misc Snow cover fraction (SNOWCF) misc Surface water body cover fraction (WaterBodyCF) misc LVS3 misc MODIS misc Hyperion misc NDVI misc EVI (EVI2) misc NIR misc NDSI Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model |
authorStr |
Zhang, Qingyuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306591324 |
format |
electronic Article |
dewey-ones |
050 - General serial publications 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0704 |
topic_title |
050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model Arctic tundra Vegetation cover fraction (VGCF) Soil cover fraction (SOILCF) Snow cover fraction (SNOWCF) Surface water body cover fraction (WaterBodyCF) LVS3 MODIS Hyperion NDVI EVI (EVI2) NIR NDSI |
topic |
ddc 050 bkl 38.03 bkl 43.03 bkl 74.41 misc Arctic tundra misc Vegetation cover fraction (VGCF) misc Soil cover fraction (SOILCF) misc Snow cover fraction (SNOWCF) misc Surface water body cover fraction (WaterBodyCF) misc LVS3 misc MODIS misc Hyperion misc NDVI misc EVI (EVI2) misc NIR misc NDSI |
topic_unstemmed |
ddc 050 bkl 38.03 bkl 43.03 bkl 74.41 misc Arctic tundra misc Vegetation cover fraction (VGCF) misc Soil cover fraction (SOILCF) misc Snow cover fraction (SNOWCF) misc Surface water body cover fraction (WaterBodyCF) misc LVS3 misc MODIS misc Hyperion misc NDVI misc EVI (EVI2) misc NIR misc NDSI |
topic_browse |
ddc 050 bkl 38.03 bkl 43.03 bkl 74.41 misc Arctic tundra misc Vegetation cover fraction (VGCF) misc Soil cover fraction (SOILCF) misc Snow cover fraction (SNOWCF) misc Surface water body cover fraction (WaterBodyCF) misc LVS3 misc MODIS misc Hyperion misc NDVI misc EVI (EVI2) misc NIR misc NDSI |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote sensing of environment |
hierarchy_parent_id |
306591324 |
dewey-tens |
050 - Magazines, journals & serials 550 - Earth sciences & geology |
hierarchy_top_title |
Remote sensing of environment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306591324 (DE-600)1498713-2 (DE-576)098330268 |
title |
Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model |
ctrlnum |
(DE-627)ELV003845079 (ELSEVIER)S0034-4257(20)30046-8 |
title_full |
Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model |
author_sort |
Zhang, Qingyuan |
journal |
Remote sensing of environment |
journalStr |
Remote sensing of environment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Qingyuan Yao, Tian Huemmrich, K. Fred Middleton, Elizabeth M. Lyapustin, Alexei Wang, Yujie |
container_volume |
240 |
class |
050 550 DE-600 38.03 bkl 43.03 bkl 74.41 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Qingyuan |
doi_str_mv |
10.1016/j.rse.2020.111677 |
dewey-full |
050 550 |
author2-role |
verfasserin |
title_sort |
evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the utqiaġvik tundra ecosystem in alaska with the lvs3 model |
title_auth |
Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model |
abstract |
Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located around Utqiaġvik (formerly Barrow) of Alaska with the Moderate Resolution Imaging Spectrometer (MODIS) images in 2001–2014. Empirical vegetation indices, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), the index of near infrared of vegetation (NIRv), and modified EVI (EVI2), have been used to monitor vegetation. Normalized difference snow index (NDSI) has been widely applied to monitor snow. The vegetation cover fraction (VGCF), the soil cover fraction (SOILCF), the snow cover fraction (SNOWCF), the surface water body cover fraction (WaterBodyCF), the fractional absorption of photosynthetically active radiation (PAR) by vegetation chlorophyll (fAPARchl), the fractional absorption of PAR by non-chlorophyll components of the vegetation (fAPARnon-chl), and the fractional absorption of PAR by the entire canopy (fAPARcanopy) are retrieved with the MODIS images and a coupled Leaf-Vegetation-Soil-Snow-Surface water body radiative transfer model, LVS3. The vegetation indices (NDVI, EVI, EVI2 and NIRv) differ from VGCF, fAPARchl, fAPARnon-chl, and fAPARcanopy. In addition to vegetation, we find that soil, snow and surface water also have impacts on vegetation indices NDVI, EVI (EVI2), and NIRv. Presence of snow makes lower the observed values of NDVI, EVI2 and NIRv. After snowmelt is gone, the vegetation indices (NDVI, EVI, EVI2 and NIRv) linearly decrease with SOILCF and WaterBodyCF, and WaterBodyCF has stronger impacts on these vegetation indices than SOILCF. The relationship between EVI and snow is complicated. NDSI non-linearly increases with SNOWCF, but linearly increases with sum of SNOWCF and WaterBodyCF (sum = 0.5893 × NDSI +0.4342, R2 = 0.976). NDSI linearly decreases with VGCF, and the relationship between NDSI and SOILCF is complex. Retrievals of VGCF, fAPARchl, fAPARnon-chl and fAPARcanopy with the LVS3 model provide alternatives for vegetation monitoring and ecological modeling. |
abstractGer |
Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located around Utqiaġvik (formerly Barrow) of Alaska with the Moderate Resolution Imaging Spectrometer (MODIS) images in 2001–2014. Empirical vegetation indices, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), the index of near infrared of vegetation (NIRv), and modified EVI (EVI2), have been used to monitor vegetation. Normalized difference snow index (NDSI) has been widely applied to monitor snow. The vegetation cover fraction (VGCF), the soil cover fraction (SOILCF), the snow cover fraction (SNOWCF), the surface water body cover fraction (WaterBodyCF), the fractional absorption of photosynthetically active radiation (PAR) by vegetation chlorophyll (fAPARchl), the fractional absorption of PAR by non-chlorophyll components of the vegetation (fAPARnon-chl), and the fractional absorption of PAR by the entire canopy (fAPARcanopy) are retrieved with the MODIS images and a coupled Leaf-Vegetation-Soil-Snow-Surface water body radiative transfer model, LVS3. The vegetation indices (NDVI, EVI, EVI2 and NIRv) differ from VGCF, fAPARchl, fAPARnon-chl, and fAPARcanopy. In addition to vegetation, we find that soil, snow and surface water also have impacts on vegetation indices NDVI, EVI (EVI2), and NIRv. Presence of snow makes lower the observed values of NDVI, EVI2 and NIRv. After snowmelt is gone, the vegetation indices (NDVI, EVI, EVI2 and NIRv) linearly decrease with SOILCF and WaterBodyCF, and WaterBodyCF has stronger impacts on these vegetation indices than SOILCF. The relationship between EVI and snow is complicated. NDSI non-linearly increases with SNOWCF, but linearly increases with sum of SNOWCF and WaterBodyCF (sum = 0.5893 × NDSI +0.4342, R2 = 0.976). NDSI linearly decreases with VGCF, and the relationship between NDSI and SOILCF is complex. Retrievals of VGCF, fAPARchl, fAPARnon-chl and fAPARcanopy with the LVS3 model provide alternatives for vegetation monitoring and ecological modeling. |
abstract_unstemmed |
Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located around Utqiaġvik (formerly Barrow) of Alaska with the Moderate Resolution Imaging Spectrometer (MODIS) images in 2001–2014. Empirical vegetation indices, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), the index of near infrared of vegetation (NIRv), and modified EVI (EVI2), have been used to monitor vegetation. Normalized difference snow index (NDSI) has been widely applied to monitor snow. The vegetation cover fraction (VGCF), the soil cover fraction (SOILCF), the snow cover fraction (SNOWCF), the surface water body cover fraction (WaterBodyCF), the fractional absorption of photosynthetically active radiation (PAR) by vegetation chlorophyll (fAPARchl), the fractional absorption of PAR by non-chlorophyll components of the vegetation (fAPARnon-chl), and the fractional absorption of PAR by the entire canopy (fAPARcanopy) are retrieved with the MODIS images and a coupled Leaf-Vegetation-Soil-Snow-Surface water body radiative transfer model, LVS3. The vegetation indices (NDVI, EVI, EVI2 and NIRv) differ from VGCF, fAPARchl, fAPARnon-chl, and fAPARcanopy. In addition to vegetation, we find that soil, snow and surface water also have impacts on vegetation indices NDVI, EVI (EVI2), and NIRv. Presence of snow makes lower the observed values of NDVI, EVI2 and NIRv. After snowmelt is gone, the vegetation indices (NDVI, EVI, EVI2 and NIRv) linearly decrease with SOILCF and WaterBodyCF, and WaterBodyCF has stronger impacts on these vegetation indices than SOILCF. The relationship between EVI and snow is complicated. NDSI non-linearly increases with SNOWCF, but linearly increases with sum of SNOWCF and WaterBodyCF (sum = 0.5893 × NDSI +0.4342, R2 = 0.976). NDSI linearly decreases with VGCF, and the relationship between NDSI and SOILCF is complex. Retrievals of VGCF, fAPARchl, fAPARnon-chl and fAPARcanopy with the LVS3 model provide alternatives for vegetation monitoring and ecological modeling. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model |
remote_bool |
true |
author2 |
Yao, Tian Huemmrich, K. Fred Middleton, Elizabeth M. Lyapustin, Alexei Wang, Yujie |
author2Str |
Yao, Tian Huemmrich, K. Fred Middleton, Elizabeth M. Lyapustin, Alexei Wang, Yujie |
ppnlink |
306591324 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.rse.2020.111677 |
up_date |
2024-07-06T20:59:08.846Z |
_version_ |
1803864819732840448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003845079</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132321.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230501s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.rse.2020.111677</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003845079</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0034-4257(20)30046-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Qingyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluating impacts of snow, surface water, soil and vegetation on empirical vegetation and snow indices for the Utqiaġvik tundra ecosystem in Alaska with the LVS3 model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Satellite observations for the Arctic and boreal region may contain information of vegetation, soil, snow, snowmelt, and/or other surface water bodies. We investigated the impacts of vegetation, soil, snow and surface water on empirical vegetation/snow indices on a tundra ecosystem area located around Utqiaġvik (formerly Barrow) of Alaska with the Moderate Resolution Imaging Spectrometer (MODIS) images in 2001–2014. Empirical vegetation indices, such as normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), the index of near infrared of vegetation (NIRv), and modified EVI (EVI2), have been used to monitor vegetation. Normalized difference snow index (NDSI) has been widely applied to monitor snow. The vegetation cover fraction (VGCF), the soil cover fraction (SOILCF), the snow cover fraction (SNOWCF), the surface water body cover fraction (WaterBodyCF), the fractional absorption of photosynthetically active radiation (PAR) by vegetation chlorophyll (fAPARchl), the fractional absorption of PAR by non-chlorophyll components of the vegetation (fAPARnon-chl), and the fractional absorption of PAR by the entire canopy (fAPARcanopy) are retrieved with the MODIS images and a coupled Leaf-Vegetation-Soil-Snow-Surface water body radiative transfer model, LVS3. The vegetation indices (NDVI, EVI, EVI2 and NIRv) differ from VGCF, fAPARchl, fAPARnon-chl, and fAPARcanopy. In addition to vegetation, we find that soil, snow and surface water also have impacts on vegetation indices NDVI, EVI (EVI2), and NIRv. Presence of snow makes lower the observed values of NDVI, EVI2 and NIRv. After snowmelt is gone, the vegetation indices (NDVI, EVI, EVI2 and NIRv) linearly decrease with SOILCF and WaterBodyCF, and WaterBodyCF has stronger impacts on these vegetation indices than SOILCF. The relationship between EVI and snow is complicated. NDSI non-linearly increases with SNOWCF, but linearly increases with sum of SNOWCF and WaterBodyCF (sum = 0.5893 × NDSI +0.4342, R2 = 0.976). NDSI linearly decreases with VGCF, and the relationship between NDSI and SOILCF is complex. Retrievals of VGCF, fAPARchl, fAPARnon-chl and fAPARcanopy with the LVS3 model provide alternatives for vegetation monitoring and ecological modeling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arctic tundra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vegetation cover fraction (VGCF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil cover fraction (SOILCF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Snow cover fraction (SNOWCF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface water body cover fraction (WaterBodyCF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LVS3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MODIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDVI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EVI (EVI2)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NIR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDSI</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huemmrich, K. Fred</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Middleton, Elizabeth M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lyapustin, Alexei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yujie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Remote sensing of environment</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1969</subfield><subfield code="g">240</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591324</subfield><subfield code="w">(DE-600)1498713-2</subfield><subfield code="w">(DE-576)098330268</subfield><subfield code="x">1879-0704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:240</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.03</subfield><subfield code="j">Methoden und Techniken der Geowissenschaften</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.03</subfield><subfield code="j">Methoden der Umweltforschung und des Umweltschutzes</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">240</subfield></datafield></record></collection>
|
score |
7.399102 |