Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes
An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for...
Ausführliche Beschreibung
Autor*in: |
Kılkış, Birol [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Solar energy - Amsterdam [u.a.] : Elsevier Science, 1957, 200, Seite 89-107 |
---|---|
Übergeordnetes Werk: |
volume:200 ; pages:89-107 |
DOI / URN: |
10.1016/j.solener.2019.10.075 |
---|
Katalog-ID: |
ELV003879852 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003879852 | ||
003 | DE-627 | ||
005 | 20230524143230.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.solener.2019.10.075 |2 doi | |
035 | |a (DE-627)ELV003879852 | ||
035 | |a (ELSEVIER)S0038-092X(19)31071-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Kılkış, Birol |e verfasserin |4 aut | |
245 | 1 | 0 | |a Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for thermal storage, and thermally controlled heat pipes with dynamic control. These cartridges may be easily removed from the master PVT casing and re-installed for repair, inspection, and replacements. When cartridges are installed, the composite PVT module is completed by adding a flat-plate collector layer on the top. An internal array of pulse-control heat pipes maintains the total exergy output (power and heat) at a maximum by adjusting the heat flux. This PVT panel design eliminates the need for external thermal storage, pumping of the PVT coolant, and associated parasitic losses. PVT technology is made more energetically and exergetically rational as an economic asset for decarbonizing the environment. In such a configuration, it represents the solar equivalent of a conventional cogeneration system with a bottoming cycle. This paper summarizes the technological evolution of the new composite PVT system and provides examples of its use. Pilot-scale tests have shown that the Rational Exergy Management Model efficiency is about 25% more than a conventional PVT system and the total net electrical power output per unit solar insolation area is more than 30%. Total exergy output (power and heat) is twice as much as a conventional PVT unit in a typical summer month. The results obtained are discussed with further evolutionary recommendations. The importance of exergy-levelized unit panel cost is put forth to provide a basis for the fundamental procedure for a dedicated, well-accepted, and stand-alone PVT test method for the rating of system performance. | ||
650 | 4 | |a Solar PVT | |
650 | 4 | |a Exergy-levelized unit cost | |
650 | 4 | |a Phase change material | |
650 | 4 | |a Rational exergy management model | |
650 | 4 | |a Solar cogeneration | |
650 | 4 | |a Bottoming cycle | |
650 | 4 | |a TEG modules | |
650 | 4 | |a Thermally pulsing heat pipe | |
650 | 4 | |a Modular PVT | |
773 | 0 | 8 | |i Enthalten in |t Solar energy |d Amsterdam [u.a.] : Elsevier Science, 1957 |g 200, Seite 89-107 |h Online-Ressource |w (DE-627)320525597 |w (DE-600)2015126-3 |w (DE-576)096806648 |x 1471-1257 |7 nnns |
773 | 1 | 8 | |g volume:200 |g pages:89-107 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |
951 | |a AR | ||
952 | |d 200 |h 89-107 |
author_variant |
b k bk |
---|---|
matchkey_str |
article:14711257:2019----::eeomnoaopstptaewtpmmoietemdlsltltslrolco |
hierarchy_sort_str |
2019 |
bklnumber |
52.56 |
publishDate |
2019 |
allfields |
10.1016/j.solener.2019.10.075 doi (DE-627)ELV003879852 (ELSEVIER)S0038-092X(19)31071-0 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Kılkış, Birol verfasserin aut Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for thermal storage, and thermally controlled heat pipes with dynamic control. These cartridges may be easily removed from the master PVT casing and re-installed for repair, inspection, and replacements. When cartridges are installed, the composite PVT module is completed by adding a flat-plate collector layer on the top. An internal array of pulse-control heat pipes maintains the total exergy output (power and heat) at a maximum by adjusting the heat flux. This PVT panel design eliminates the need for external thermal storage, pumping of the PVT coolant, and associated parasitic losses. PVT technology is made more energetically and exergetically rational as an economic asset for decarbonizing the environment. In such a configuration, it represents the solar equivalent of a conventional cogeneration system with a bottoming cycle. This paper summarizes the technological evolution of the new composite PVT system and provides examples of its use. Pilot-scale tests have shown that the Rational Exergy Management Model efficiency is about 25% more than a conventional PVT system and the total net electrical power output per unit solar insolation area is more than 30%. Total exergy output (power and heat) is twice as much as a conventional PVT unit in a typical summer month. The results obtained are discussed with further evolutionary recommendations. The importance of exergy-levelized unit panel cost is put forth to provide a basis for the fundamental procedure for a dedicated, well-accepted, and stand-alone PVT test method for the rating of system performance. Solar PVT Exergy-levelized unit cost Phase change material Rational exergy management model Solar cogeneration Bottoming cycle TEG modules Thermally pulsing heat pipe Modular PVT Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 200, Seite 89-107 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:200 pages:89-107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 200 89-107 |
spelling |
10.1016/j.solener.2019.10.075 doi (DE-627)ELV003879852 (ELSEVIER)S0038-092X(19)31071-0 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Kılkış, Birol verfasserin aut Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for thermal storage, and thermally controlled heat pipes with dynamic control. These cartridges may be easily removed from the master PVT casing and re-installed for repair, inspection, and replacements. When cartridges are installed, the composite PVT module is completed by adding a flat-plate collector layer on the top. An internal array of pulse-control heat pipes maintains the total exergy output (power and heat) at a maximum by adjusting the heat flux. This PVT panel design eliminates the need for external thermal storage, pumping of the PVT coolant, and associated parasitic losses. PVT technology is made more energetically and exergetically rational as an economic asset for decarbonizing the environment. In such a configuration, it represents the solar equivalent of a conventional cogeneration system with a bottoming cycle. This paper summarizes the technological evolution of the new composite PVT system and provides examples of its use. Pilot-scale tests have shown that the Rational Exergy Management Model efficiency is about 25% more than a conventional PVT system and the total net electrical power output per unit solar insolation area is more than 30%. Total exergy output (power and heat) is twice as much as a conventional PVT unit in a typical summer month. The results obtained are discussed with further evolutionary recommendations. The importance of exergy-levelized unit panel cost is put forth to provide a basis for the fundamental procedure for a dedicated, well-accepted, and stand-alone PVT test method for the rating of system performance. Solar PVT Exergy-levelized unit cost Phase change material Rational exergy management model Solar cogeneration Bottoming cycle TEG modules Thermally pulsing heat pipe Modular PVT Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 200, Seite 89-107 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:200 pages:89-107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 200 89-107 |
allfields_unstemmed |
10.1016/j.solener.2019.10.075 doi (DE-627)ELV003879852 (ELSEVIER)S0038-092X(19)31071-0 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Kılkış, Birol verfasserin aut Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for thermal storage, and thermally controlled heat pipes with dynamic control. These cartridges may be easily removed from the master PVT casing and re-installed for repair, inspection, and replacements. When cartridges are installed, the composite PVT module is completed by adding a flat-plate collector layer on the top. An internal array of pulse-control heat pipes maintains the total exergy output (power and heat) at a maximum by adjusting the heat flux. This PVT panel design eliminates the need for external thermal storage, pumping of the PVT coolant, and associated parasitic losses. PVT technology is made more energetically and exergetically rational as an economic asset for decarbonizing the environment. In such a configuration, it represents the solar equivalent of a conventional cogeneration system with a bottoming cycle. This paper summarizes the technological evolution of the new composite PVT system and provides examples of its use. Pilot-scale tests have shown that the Rational Exergy Management Model efficiency is about 25% more than a conventional PVT system and the total net electrical power output per unit solar insolation area is more than 30%. Total exergy output (power and heat) is twice as much as a conventional PVT unit in a typical summer month. The results obtained are discussed with further evolutionary recommendations. The importance of exergy-levelized unit panel cost is put forth to provide a basis for the fundamental procedure for a dedicated, well-accepted, and stand-alone PVT test method for the rating of system performance. Solar PVT Exergy-levelized unit cost Phase change material Rational exergy management model Solar cogeneration Bottoming cycle TEG modules Thermally pulsing heat pipe Modular PVT Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 200, Seite 89-107 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:200 pages:89-107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 200 89-107 |
allfieldsGer |
10.1016/j.solener.2019.10.075 doi (DE-627)ELV003879852 (ELSEVIER)S0038-092X(19)31071-0 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Kılkış, Birol verfasserin aut Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for thermal storage, and thermally controlled heat pipes with dynamic control. These cartridges may be easily removed from the master PVT casing and re-installed for repair, inspection, and replacements. When cartridges are installed, the composite PVT module is completed by adding a flat-plate collector layer on the top. An internal array of pulse-control heat pipes maintains the total exergy output (power and heat) at a maximum by adjusting the heat flux. This PVT panel design eliminates the need for external thermal storage, pumping of the PVT coolant, and associated parasitic losses. PVT technology is made more energetically and exergetically rational as an economic asset for decarbonizing the environment. In such a configuration, it represents the solar equivalent of a conventional cogeneration system with a bottoming cycle. This paper summarizes the technological evolution of the new composite PVT system and provides examples of its use. Pilot-scale tests have shown that the Rational Exergy Management Model efficiency is about 25% more than a conventional PVT system and the total net electrical power output per unit solar insolation area is more than 30%. Total exergy output (power and heat) is twice as much as a conventional PVT unit in a typical summer month. The results obtained are discussed with further evolutionary recommendations. The importance of exergy-levelized unit panel cost is put forth to provide a basis for the fundamental procedure for a dedicated, well-accepted, and stand-alone PVT test method for the rating of system performance. Solar PVT Exergy-levelized unit cost Phase change material Rational exergy management model Solar cogeneration Bottoming cycle TEG modules Thermally pulsing heat pipe Modular PVT Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 200, Seite 89-107 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:200 pages:89-107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 200 89-107 |
allfieldsSound |
10.1016/j.solener.2019.10.075 doi (DE-627)ELV003879852 (ELSEVIER)S0038-092X(19)31071-0 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Kılkış, Birol verfasserin aut Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for thermal storage, and thermally controlled heat pipes with dynamic control. These cartridges may be easily removed from the master PVT casing and re-installed for repair, inspection, and replacements. When cartridges are installed, the composite PVT module is completed by adding a flat-plate collector layer on the top. An internal array of pulse-control heat pipes maintains the total exergy output (power and heat) at a maximum by adjusting the heat flux. This PVT panel design eliminates the need for external thermal storage, pumping of the PVT coolant, and associated parasitic losses. PVT technology is made more energetically and exergetically rational as an economic asset for decarbonizing the environment. In such a configuration, it represents the solar equivalent of a conventional cogeneration system with a bottoming cycle. This paper summarizes the technological evolution of the new composite PVT system and provides examples of its use. Pilot-scale tests have shown that the Rational Exergy Management Model efficiency is about 25% more than a conventional PVT system and the total net electrical power output per unit solar insolation area is more than 30%. Total exergy output (power and heat) is twice as much as a conventional PVT unit in a typical summer month. The results obtained are discussed with further evolutionary recommendations. The importance of exergy-levelized unit panel cost is put forth to provide a basis for the fundamental procedure for a dedicated, well-accepted, and stand-alone PVT test method for the rating of system performance. Solar PVT Exergy-levelized unit cost Phase change material Rational exergy management model Solar cogeneration Bottoming cycle TEG modules Thermally pulsing heat pipe Modular PVT Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 200, Seite 89-107 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:200 pages:89-107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 200 89-107 |
language |
English |
source |
Enthalten in Solar energy 200, Seite 89-107 volume:200 pages:89-107 |
sourceStr |
Enthalten in Solar energy 200, Seite 89-107 volume:200 pages:89-107 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Solar PVT Exergy-levelized unit cost Phase change material Rational exergy management model Solar cogeneration Bottoming cycle TEG modules Thermally pulsing heat pipe Modular PVT |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Solar energy |
authorswithroles_txt_mv |
Kılkış, Birol @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320525597 |
dewey-sort |
3530 |
id |
ELV003879852 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003879852</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143230.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solener.2019.10.075</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003879852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-092X(19)31071-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kılkış, Birol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for thermal storage, and thermally controlled heat pipes with dynamic control. These cartridges may be easily removed from the master PVT casing and re-installed for repair, inspection, and replacements. When cartridges are installed, the composite PVT module is completed by adding a flat-plate collector layer on the top. An internal array of pulse-control heat pipes maintains the total exergy output (power and heat) at a maximum by adjusting the heat flux. This PVT panel design eliminates the need for external thermal storage, pumping of the PVT coolant, and associated parasitic losses. PVT technology is made more energetically and exergetically rational as an economic asset for decarbonizing the environment. In such a configuration, it represents the solar equivalent of a conventional cogeneration system with a bottoming cycle. This paper summarizes the technological evolution of the new composite PVT system and provides examples of its use. Pilot-scale tests have shown that the Rational Exergy Management Model efficiency is about 25% more than a conventional PVT system and the total net electrical power output per unit solar insolation area is more than 30%. Total exergy output (power and heat) is twice as much as a conventional PVT unit in a typical summer month. The results obtained are discussed with further evolutionary recommendations. The importance of exergy-levelized unit panel cost is put forth to provide a basis for the fundamental procedure for a dedicated, well-accepted, and stand-alone PVT test method for the rating of system performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar PVT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exergy-levelized unit cost</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase change material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational exergy management model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar cogeneration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bottoming cycle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TEG modules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermally pulsing heat pipe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular PVT</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1957</subfield><subfield code="g">200, Seite 89-107</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320525597</subfield><subfield code="w">(DE-600)2015126-3</subfield><subfield code="w">(DE-576)096806648</subfield><subfield code="x">1471-1257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:200</subfield><subfield code="g">pages:89-107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">200</subfield><subfield code="h">89-107</subfield></datafield></record></collection>
|
author |
Kılkış, Birol |
spellingShingle |
Kılkış, Birol ddc 530 bkl 52.56 misc Solar PVT misc Exergy-levelized unit cost misc Phase change material misc Rational exergy management model misc Solar cogeneration misc Bottoming cycle misc TEG modules misc Thermally pulsing heat pipe misc Modular PVT Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes |
authorStr |
Kılkış, Birol |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320525597 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-1257 |
topic_title |
530 DE-600 52.56 bkl Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes Solar PVT Exergy-levelized unit cost Phase change material Rational exergy management model Solar cogeneration Bottoming cycle TEG modules Thermally pulsing heat pipe Modular PVT |
topic |
ddc 530 bkl 52.56 misc Solar PVT misc Exergy-levelized unit cost misc Phase change material misc Rational exergy management model misc Solar cogeneration misc Bottoming cycle misc TEG modules misc Thermally pulsing heat pipe misc Modular PVT |
topic_unstemmed |
ddc 530 bkl 52.56 misc Solar PVT misc Exergy-levelized unit cost misc Phase change material misc Rational exergy management model misc Solar cogeneration misc Bottoming cycle misc TEG modules misc Thermally pulsing heat pipe misc Modular PVT |
topic_browse |
ddc 530 bkl 52.56 misc Solar PVT misc Exergy-levelized unit cost misc Phase change material misc Rational exergy management model misc Solar cogeneration misc Bottoming cycle misc TEG modules misc Thermally pulsing heat pipe misc Modular PVT |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Solar energy |
hierarchy_parent_id |
320525597 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Solar energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 |
title |
Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes |
ctrlnum |
(DE-627)ELV003879852 (ELSEVIER)S0038-092X(19)31071-0 |
title_full |
Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes |
author_sort |
Kılkış, Birol |
journal |
Solar energy |
journalStr |
Solar energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
89 |
author_browse |
Kılkış, Birol |
container_volume |
200 |
class |
530 DE-600 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kılkış, Birol |
doi_str_mv |
10.1016/j.solener.2019.10.075 |
dewey-full |
530 |
title_sort |
development of a composite pvt panel with pcm embodiment, teg modules, flat-plate solar collector, and thermally pulsing heat pipes |
title_auth |
Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes |
abstract |
An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for thermal storage, and thermally controlled heat pipes with dynamic control. These cartridges may be easily removed from the master PVT casing and re-installed for repair, inspection, and replacements. When cartridges are installed, the composite PVT module is completed by adding a flat-plate collector layer on the top. An internal array of pulse-control heat pipes maintains the total exergy output (power and heat) at a maximum by adjusting the heat flux. This PVT panel design eliminates the need for external thermal storage, pumping of the PVT coolant, and associated parasitic losses. PVT technology is made more energetically and exergetically rational as an economic asset for decarbonizing the environment. In such a configuration, it represents the solar equivalent of a conventional cogeneration system with a bottoming cycle. This paper summarizes the technological evolution of the new composite PVT system and provides examples of its use. Pilot-scale tests have shown that the Rational Exergy Management Model efficiency is about 25% more than a conventional PVT system and the total net electrical power output per unit solar insolation area is more than 30%. Total exergy output (power and heat) is twice as much as a conventional PVT unit in a typical summer month. The results obtained are discussed with further evolutionary recommendations. The importance of exergy-levelized unit panel cost is put forth to provide a basis for the fundamental procedure for a dedicated, well-accepted, and stand-alone PVT test method for the rating of system performance. |
abstractGer |
An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for thermal storage, and thermally controlled heat pipes with dynamic control. These cartridges may be easily removed from the master PVT casing and re-installed for repair, inspection, and replacements. When cartridges are installed, the composite PVT module is completed by adding a flat-plate collector layer on the top. An internal array of pulse-control heat pipes maintains the total exergy output (power and heat) at a maximum by adjusting the heat flux. This PVT panel design eliminates the need for external thermal storage, pumping of the PVT coolant, and associated parasitic losses. PVT technology is made more energetically and exergetically rational as an economic asset for decarbonizing the environment. In such a configuration, it represents the solar equivalent of a conventional cogeneration system with a bottoming cycle. This paper summarizes the technological evolution of the new composite PVT system and provides examples of its use. Pilot-scale tests have shown that the Rational Exergy Management Model efficiency is about 25% more than a conventional PVT system and the total net electrical power output per unit solar insolation area is more than 30%. Total exergy output (power and heat) is twice as much as a conventional PVT unit in a typical summer month. The results obtained are discussed with further evolutionary recommendations. The importance of exergy-levelized unit panel cost is put forth to provide a basis for the fundamental procedure for a dedicated, well-accepted, and stand-alone PVT test method for the rating of system performance. |
abstract_unstemmed |
An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for thermal storage, and thermally controlled heat pipes with dynamic control. These cartridges may be easily removed from the master PVT casing and re-installed for repair, inspection, and replacements. When cartridges are installed, the composite PVT module is completed by adding a flat-plate collector layer on the top. An internal array of pulse-control heat pipes maintains the total exergy output (power and heat) at a maximum by adjusting the heat flux. This PVT panel design eliminates the need for external thermal storage, pumping of the PVT coolant, and associated parasitic losses. PVT technology is made more energetically and exergetically rational as an economic asset for decarbonizing the environment. In such a configuration, it represents the solar equivalent of a conventional cogeneration system with a bottoming cycle. This paper summarizes the technological evolution of the new composite PVT system and provides examples of its use. Pilot-scale tests have shown that the Rational Exergy Management Model efficiency is about 25% more than a conventional PVT system and the total net electrical power output per unit solar insolation area is more than 30%. Total exergy output (power and heat) is twice as much as a conventional PVT unit in a typical summer month. The results obtained are discussed with further evolutionary recommendations. The importance of exergy-levelized unit panel cost is put forth to provide a basis for the fundamental procedure for a dedicated, well-accepted, and stand-alone PVT test method for the rating of system performance. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes |
remote_bool |
true |
ppnlink |
320525597 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.solener.2019.10.075 |
up_date |
2024-07-06T21:06:10.125Z |
_version_ |
1803865261475889152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003879852</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143230.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solener.2019.10.075</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003879852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-092X(19)31071-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kılkış, Birol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An integrated, multi-layered, composite photovoltaic thermal (PVT) module consisting of a multitude of stand-alone mini PVT cartridges was developed and a prototype was tested. Individual PVT cartridges consist of several sandwiched layers with photovoltaic cells, TEG units, packed-bed PCM layer for thermal storage, and thermally controlled heat pipes with dynamic control. These cartridges may be easily removed from the master PVT casing and re-installed for repair, inspection, and replacements. When cartridges are installed, the composite PVT module is completed by adding a flat-plate collector layer on the top. An internal array of pulse-control heat pipes maintains the total exergy output (power and heat) at a maximum by adjusting the heat flux. This PVT panel design eliminates the need for external thermal storage, pumping of the PVT coolant, and associated parasitic losses. PVT technology is made more energetically and exergetically rational as an economic asset for decarbonizing the environment. In such a configuration, it represents the solar equivalent of a conventional cogeneration system with a bottoming cycle. This paper summarizes the technological evolution of the new composite PVT system and provides examples of its use. Pilot-scale tests have shown that the Rational Exergy Management Model efficiency is about 25% more than a conventional PVT system and the total net electrical power output per unit solar insolation area is more than 30%. Total exergy output (power and heat) is twice as much as a conventional PVT unit in a typical summer month. The results obtained are discussed with further evolutionary recommendations. The importance of exergy-levelized unit panel cost is put forth to provide a basis for the fundamental procedure for a dedicated, well-accepted, and stand-alone PVT test method for the rating of system performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar PVT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exergy-levelized unit cost</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase change material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational exergy management model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar cogeneration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bottoming cycle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TEG modules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermally pulsing heat pipe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular PVT</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1957</subfield><subfield code="g">200, Seite 89-107</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320525597</subfield><subfield code="w">(DE-600)2015126-3</subfield><subfield code="w">(DE-576)096806648</subfield><subfield code="x">1471-1257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:200</subfield><subfield code="g">pages:89-107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">200</subfield><subfield code="h">89-107</subfield></datafield></record></collection>
|
score |
7.4017773 |