Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation
A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still uncl...
Ausführliche Beschreibung
Autor*in: |
Bai, Yuan [verfasserIn] Wu, Yin-Hu [verfasserIn] Wang, Yun-Hong [verfasserIn] Tong, Xin [verfasserIn] Zhao, Xue-Hao [verfasserIn] Ikuno, Nozomu [verfasserIn] Hu, Hong-Ying [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Water research - Amsterdam [u.a.] : Elsevier Science, 1967, 173 |
---|---|
Übergeordnetes Werk: |
volume:173 |
DOI / URN: |
10.1016/j.watres.2020.115591 |
---|
Katalog-ID: |
ELV00388306X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00388306X | ||
003 | DE-627 | ||
005 | 20230524125509.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.watres.2020.115591 |2 doi | |
035 | |a (DE-627)ELV00388306X | ||
035 | |a (ELSEVIER)S0043-1354(20)30127-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a 38.85 |2 bkl | ||
084 | |a 43.50 |2 bkl | ||
084 | |a 58.51 |2 bkl | ||
100 | 1 | |a Bai, Yuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption. | ||
650 | 4 | |a Denitrification effluent | |
650 | 4 | |a Membrane fouling potential | |
650 | 4 | |a Ozonation | |
650 | 4 | |a Control mechanism | |
650 | 4 | |a Component characteristics | |
700 | 1 | |a Wu, Yin-Hu |e verfasserin |4 aut | |
700 | 1 | |a Wang, Yun-Hong |e verfasserin |4 aut | |
700 | 1 | |a Tong, Xin |e verfasserin |4 aut | |
700 | 1 | |a Zhao, Xue-Hao |e verfasserin |4 aut | |
700 | 1 | |a Ikuno, Nozomu |e verfasserin |4 aut | |
700 | 1 | |a Hu, Hong-Ying |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Water research |d Amsterdam [u.a.] : Elsevier Science, 1967 |g 173 |h Online-Ressource |w (DE-627)306713780 |w (DE-600)1501098-3 |w (DE-576)098330284 |x 1879-2448 |7 nnns |
773 | 1 | 8 | |g volume:173 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.85 |j Hydrologie: Allgemeines |
936 | b | k | |a 43.50 |j Umweltbelastungen |
936 | b | k | |a 58.51 |j Abwassertechnik |j Wasseraufbereitung |
951 | |a AR | ||
952 | |d 173 |
author_variant |
y b yb y h w yhw y h w yhw x t xt x h z xhz n i ni h y h hyh |
---|---|
matchkey_str |
article:18792448:2020----::ebaeolnptnilfhdntiiainitrfletnteotomcaimyzntoi |
hierarchy_sort_str |
2020 |
bklnumber |
38.85 43.50 58.51 |
publishDate |
2020 |
allfields |
10.1016/j.watres.2020.115591 doi (DE-627)ELV00388306X (ELSEVIER)S0043-1354(20)30127-5 DE-627 ger DE-627 rda eng 550 DE-600 38.85 bkl 43.50 bkl 58.51 bkl Bai, Yuan verfasserin aut Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption. Denitrification effluent Membrane fouling potential Ozonation Control mechanism Component characteristics Wu, Yin-Hu verfasserin aut Wang, Yun-Hong verfasserin aut Tong, Xin verfasserin aut Zhao, Xue-Hao verfasserin aut Ikuno, Nozomu verfasserin aut Hu, Hong-Ying verfasserin aut Enthalten in Water research Amsterdam [u.a.] : Elsevier Science, 1967 173 Online-Ressource (DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 1879-2448 nnns volume:173 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines 43.50 Umweltbelastungen 58.51 Abwassertechnik Wasseraufbereitung AR 173 |
spelling |
10.1016/j.watres.2020.115591 doi (DE-627)ELV00388306X (ELSEVIER)S0043-1354(20)30127-5 DE-627 ger DE-627 rda eng 550 DE-600 38.85 bkl 43.50 bkl 58.51 bkl Bai, Yuan verfasserin aut Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption. Denitrification effluent Membrane fouling potential Ozonation Control mechanism Component characteristics Wu, Yin-Hu verfasserin aut Wang, Yun-Hong verfasserin aut Tong, Xin verfasserin aut Zhao, Xue-Hao verfasserin aut Ikuno, Nozomu verfasserin aut Hu, Hong-Ying verfasserin aut Enthalten in Water research Amsterdam [u.a.] : Elsevier Science, 1967 173 Online-Ressource (DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 1879-2448 nnns volume:173 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines 43.50 Umweltbelastungen 58.51 Abwassertechnik Wasseraufbereitung AR 173 |
allfields_unstemmed |
10.1016/j.watres.2020.115591 doi (DE-627)ELV00388306X (ELSEVIER)S0043-1354(20)30127-5 DE-627 ger DE-627 rda eng 550 DE-600 38.85 bkl 43.50 bkl 58.51 bkl Bai, Yuan verfasserin aut Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption. Denitrification effluent Membrane fouling potential Ozonation Control mechanism Component characteristics Wu, Yin-Hu verfasserin aut Wang, Yun-Hong verfasserin aut Tong, Xin verfasserin aut Zhao, Xue-Hao verfasserin aut Ikuno, Nozomu verfasserin aut Hu, Hong-Ying verfasserin aut Enthalten in Water research Amsterdam [u.a.] : Elsevier Science, 1967 173 Online-Ressource (DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 1879-2448 nnns volume:173 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines 43.50 Umweltbelastungen 58.51 Abwassertechnik Wasseraufbereitung AR 173 |
allfieldsGer |
10.1016/j.watres.2020.115591 doi (DE-627)ELV00388306X (ELSEVIER)S0043-1354(20)30127-5 DE-627 ger DE-627 rda eng 550 DE-600 38.85 bkl 43.50 bkl 58.51 bkl Bai, Yuan verfasserin aut Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption. Denitrification effluent Membrane fouling potential Ozonation Control mechanism Component characteristics Wu, Yin-Hu verfasserin aut Wang, Yun-Hong verfasserin aut Tong, Xin verfasserin aut Zhao, Xue-Hao verfasserin aut Ikuno, Nozomu verfasserin aut Hu, Hong-Ying verfasserin aut Enthalten in Water research Amsterdam [u.a.] : Elsevier Science, 1967 173 Online-Ressource (DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 1879-2448 nnns volume:173 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines 43.50 Umweltbelastungen 58.51 Abwassertechnik Wasseraufbereitung AR 173 |
allfieldsSound |
10.1016/j.watres.2020.115591 doi (DE-627)ELV00388306X (ELSEVIER)S0043-1354(20)30127-5 DE-627 ger DE-627 rda eng 550 DE-600 38.85 bkl 43.50 bkl 58.51 bkl Bai, Yuan verfasserin aut Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption. Denitrification effluent Membrane fouling potential Ozonation Control mechanism Component characteristics Wu, Yin-Hu verfasserin aut Wang, Yun-Hong verfasserin aut Tong, Xin verfasserin aut Zhao, Xue-Hao verfasserin aut Ikuno, Nozomu verfasserin aut Hu, Hong-Ying verfasserin aut Enthalten in Water research Amsterdam [u.a.] : Elsevier Science, 1967 173 Online-Ressource (DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 1879-2448 nnns volume:173 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines 43.50 Umweltbelastungen 58.51 Abwassertechnik Wasseraufbereitung AR 173 |
language |
English |
source |
Enthalten in Water research 173 volume:173 |
sourceStr |
Enthalten in Water research 173 volume:173 |
format_phy_str_mv |
Article |
bklname |
Hydrologie: Allgemeines Umweltbelastungen Abwassertechnik Wasseraufbereitung |
institution |
findex.gbv.de |
topic_facet |
Denitrification effluent Membrane fouling potential Ozonation Control mechanism Component characteristics |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Water research |
authorswithroles_txt_mv |
Bai, Yuan @@aut@@ Wu, Yin-Hu @@aut@@ Wang, Yun-Hong @@aut@@ Tong, Xin @@aut@@ Zhao, Xue-Hao @@aut@@ Ikuno, Nozomu @@aut@@ Hu, Hong-Ying @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306713780 |
dewey-sort |
3550 |
id |
ELV00388306X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00388306X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524125509.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.watres.2020.115591</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00388306X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0043-1354(20)30127-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bai, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Denitrification effluent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membrane fouling potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ozonation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Component characteristics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yin-Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yun-Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Xue-Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ikuno, Nozomu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Hong-Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1967</subfield><subfield code="g">173</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306713780</subfield><subfield code="w">(DE-600)1501098-3</subfield><subfield code="w">(DE-576)098330284</subfield><subfield code="x">1879-2448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:173</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="j">Umweltbelastungen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.51</subfield><subfield code="j">Abwassertechnik</subfield><subfield code="j">Wasseraufbereitung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">173</subfield></datafield></record></collection>
|
author |
Bai, Yuan |
spellingShingle |
Bai, Yuan ddc 550 bkl 38.85 bkl 43.50 bkl 58.51 misc Denitrification effluent misc Membrane fouling potential misc Ozonation misc Control mechanism misc Component characteristics Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation |
authorStr |
Bai, Yuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306713780 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2448 |
topic_title |
550 DE-600 38.85 bkl 43.50 bkl 58.51 bkl Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation Denitrification effluent Membrane fouling potential Ozonation Control mechanism Component characteristics |
topic |
ddc 550 bkl 38.85 bkl 43.50 bkl 58.51 misc Denitrification effluent misc Membrane fouling potential misc Ozonation misc Control mechanism misc Component characteristics |
topic_unstemmed |
ddc 550 bkl 38.85 bkl 43.50 bkl 58.51 misc Denitrification effluent misc Membrane fouling potential misc Ozonation misc Control mechanism misc Component characteristics |
topic_browse |
ddc 550 bkl 38.85 bkl 43.50 bkl 58.51 misc Denitrification effluent misc Membrane fouling potential misc Ozonation misc Control mechanism misc Component characteristics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water research |
hierarchy_parent_id |
306713780 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Water research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306713780 (DE-600)1501098-3 (DE-576)098330284 |
title |
Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation |
ctrlnum |
(DE-627)ELV00388306X (ELSEVIER)S0043-1354(20)30127-5 |
title_full |
Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation |
author_sort |
Bai, Yuan |
journal |
Water research |
journalStr |
Water research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Bai, Yuan Wu, Yin-Hu Wang, Yun-Hong Tong, Xin Zhao, Xue-Hao Ikuno, Nozomu Hu, Hong-Ying |
container_volume |
173 |
class |
550 DE-600 38.85 bkl 43.50 bkl 58.51 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bai, Yuan |
doi_str_mv |
10.1016/j.watres.2020.115591 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation |
title_auth |
Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation |
abstract |
A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption. |
abstractGer |
A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption. |
abstract_unstemmed |
A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation |
remote_bool |
true |
author2 |
Wu, Yin-Hu Wang, Yun-Hong Tong, Xin Zhao, Xue-Hao Ikuno, Nozomu Hu, Hong-Ying |
author2Str |
Wu, Yin-Hu Wang, Yun-Hong Tong, Xin Zhao, Xue-Hao Ikuno, Nozomu Hu, Hong-Ying |
ppnlink |
306713780 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.watres.2020.115591 |
up_date |
2024-07-06T21:06:47.675Z |
_version_ |
1803865300850966528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00388306X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524125509.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.watres.2020.115591</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00388306X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0043-1354(20)30127-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bai, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Membrane fouling potential of the denitrification filter effluent and the control mechanism by ozonation in the process of wastewater reclamation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A process of denitrification filter (DNF) coupled with ultrafiltration (UF) and ozonation (DNF-UF-O3) has been widely applied to advanced nitrogen removal for wastewater reclamation. Despite of the effective removal of nitrogen by DNF, the influence of DNF stage on the operation of UF was still unclear. In this study, a laboratory filtration system was used to investigate the membrane fouling potential of DNF effluent and the fouling control of ozonation. The membrane fouling potential was proved to be increased significantly after DNF stage and alleviated with ozonation treatment. With the help of UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and molecular weight (MW) analysis, the change of DOM component characteristics was proved to be in accordance with the change of fouling potential. The water samples were further fractionated into six hydrophobic/hydrophilic acidic/basic/neutral fractions, among which hydrophobic acids (HOA) and hydrophobic neutrals (HON) dominated the membrane fouling potential of DNF effluent. Detailed study of each fraction revealed that higher MW components in HOA and HON played a crucial role in the fouling of UF membrane. The dominant component of membrane fouling could be degraded and removed by ozonation, and therefore significant fouling alleviation was achieved. These results indicated that in the process of wastewater reclamation, besides conventional water quality indexes, more detailed water features should also be taken into consideration to optimize the whole process. Moreover, the control effects by ozonation could be monitored simply according to the change of specific UV absorbance (SUVA) and fluorescence intensity as surrogates in engineering applications. According to these results, a modified DNF-O3-UF process with O3 dosage of 3 mg/L was proposed simply by reversing the sequence of UF and O3 with no more infrastructure. This modified DNF-O3-UF process was expected to enlarge the produce capacity of reclaimed water with much lower electricity costs and chemical consumption.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Denitrification effluent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membrane fouling potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ozonation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Component characteristics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yin-Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yun-Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Xue-Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ikuno, Nozomu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Hong-Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1967</subfield><subfield code="g">173</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306713780</subfield><subfield code="w">(DE-600)1501098-3</subfield><subfield code="w">(DE-576)098330284</subfield><subfield code="x">1879-2448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:173</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="j">Umweltbelastungen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.51</subfield><subfield code="j">Abwassertechnik</subfield><subfield code="j">Wasseraufbereitung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">173</subfield></datafield></record></collection>
|
score |
7.401005 |