The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory
In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature surv...
Ausführliche Beschreibung
Autor*in: |
Chen, Chung-De [verfasserIn] Dai, Wei-Lian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and applied fracture mechanics - Amsterdam : North-Holland, 1984, 107 |
---|---|
Übergeordnetes Werk: |
volume:107 |
DOI / URN: |
10.1016/j.tafmec.2020.102504 |
---|
Katalog-ID: |
ELV003912248 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003912248 | ||
003 | DE-627 | ||
005 | 20230524144449.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tafmec.2020.102504 |2 doi | |
035 | |a (DE-627)ELV003912248 | ||
035 | |a (ELSEVIER)S0167-8442(19)30520-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q DE-600 |
084 | |a 51.32 |2 bkl | ||
100 | 1 | |a Chen, Chung-De |e verfasserin |4 aut | |
245 | 1 | 0 | |a The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature survey reveals that SERR of the CSB can be determined by the first-order shear deformation theory (FSDT). However, the accuracy of the results in FSDT is limited due to the lack of zigzag phenomenon. In this paper, we re-solve the CSB based on the refined zigzag theory (RZT), in which the kinematics of the displacements are assumed to have zigzag characteristic. The kinematic variables of the displacements can be determined from solving the governing equations of RZT in conjunction with the boundary conditions and continuity conditions of the CSB, and then SERR can be calculated by the compliance method. We show that for sandwich beams with slender aspect ratio (large L/h) or with thin face sheet (large rh ), the FSDT can provide a satisfactory results due to the insignificant zigzag displacements. Otherwise for small L/h or small rh , the RZT should be used to take the significant zigzag displacements into consideration. For a given crack length, the FSDT give a result that the SERR is independent of the beam length. By using the RZT, it is found that the SERR depends on the beam length for a given crack length, especially for long crack length that a/L is ranged from 0.4 to 0.5. The material properties of the core materials on SERR are also investigated. By comparing with the finite element method (FEM), the deflections, compliances and SERRs in the CSB obtained by RZT are more accurate than those by FSDT. It is found that, for the cases of the core with very small shear modulus, the RZT gives correct results that are validated by FEM. For such cases, the FSDT gives incorrect calculations for SERR due to the lack of the zigzag model. The results arose in this study show the superior advantages of the use of the RZT in the SERR calculation of CSB specimen. | ||
650 | 4 | |a Cracked sandwich beam (CSB) | |
650 | 4 | |a Refined zigzag theory (RZT) | |
650 | 4 | |a Strain energy release rate (SERR) | |
700 | 1 | |a Dai, Wei-Lian |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and applied fracture mechanics |d Amsterdam : North-Holland, 1984 |g 107 |h Online-Ressource |w (DE-627)320514021 |w (DE-600)2013739-4 |w (DE-576)259484814 |x 0167-8442 |7 nnns |
773 | 1 | 8 | |g volume:107 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 51.32 |j Werkstoffmechanik |
951 | |a AR | ||
952 | |d 107 |
author_variant |
c d c cdc w l d wld |
---|---|
matchkey_str |
article:01678442:2020----::haayiomdisrieegrlaeaencakdadihemae |
hierarchy_sort_str |
2020 |
bklnumber |
51.32 |
publishDate |
2020 |
allfields |
10.1016/j.tafmec.2020.102504 doi (DE-627)ELV003912248 (ELSEVIER)S0167-8442(19)30520-8 DE-627 ger DE-627 rda eng 670 DE-600 51.32 bkl Chen, Chung-De verfasserin aut The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature survey reveals that SERR of the CSB can be determined by the first-order shear deformation theory (FSDT). However, the accuracy of the results in FSDT is limited due to the lack of zigzag phenomenon. In this paper, we re-solve the CSB based on the refined zigzag theory (RZT), in which the kinematics of the displacements are assumed to have zigzag characteristic. The kinematic variables of the displacements can be determined from solving the governing equations of RZT in conjunction with the boundary conditions and continuity conditions of the CSB, and then SERR can be calculated by the compliance method. We show that for sandwich beams with slender aspect ratio (large L/h) or with thin face sheet (large rh ), the FSDT can provide a satisfactory results due to the insignificant zigzag displacements. Otherwise for small L/h or small rh , the RZT should be used to take the significant zigzag displacements into consideration. For a given crack length, the FSDT give a result that the SERR is independent of the beam length. By using the RZT, it is found that the SERR depends on the beam length for a given crack length, especially for long crack length that a/L is ranged from 0.4 to 0.5. The material properties of the core materials on SERR are also investigated. By comparing with the finite element method (FEM), the deflections, compliances and SERRs in the CSB obtained by RZT are more accurate than those by FSDT. It is found that, for the cases of the core with very small shear modulus, the RZT gives correct results that are validated by FEM. For such cases, the FSDT gives incorrect calculations for SERR due to the lack of the zigzag model. The results arose in this study show the superior advantages of the use of the RZT in the SERR calculation of CSB specimen. Cracked sandwich beam (CSB) Refined zigzag theory (RZT) Strain energy release rate (SERR) Dai, Wei-Lian verfasserin aut Enthalten in Theoretical and applied fracture mechanics Amsterdam : North-Holland, 1984 107 Online-Ressource (DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 0167-8442 nnns volume:107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 107 |
spelling |
10.1016/j.tafmec.2020.102504 doi (DE-627)ELV003912248 (ELSEVIER)S0167-8442(19)30520-8 DE-627 ger DE-627 rda eng 670 DE-600 51.32 bkl Chen, Chung-De verfasserin aut The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature survey reveals that SERR of the CSB can be determined by the first-order shear deformation theory (FSDT). However, the accuracy of the results in FSDT is limited due to the lack of zigzag phenomenon. In this paper, we re-solve the CSB based on the refined zigzag theory (RZT), in which the kinematics of the displacements are assumed to have zigzag characteristic. The kinematic variables of the displacements can be determined from solving the governing equations of RZT in conjunction with the boundary conditions and continuity conditions of the CSB, and then SERR can be calculated by the compliance method. We show that for sandwich beams with slender aspect ratio (large L/h) or with thin face sheet (large rh ), the FSDT can provide a satisfactory results due to the insignificant zigzag displacements. Otherwise for small L/h or small rh , the RZT should be used to take the significant zigzag displacements into consideration. For a given crack length, the FSDT give a result that the SERR is independent of the beam length. By using the RZT, it is found that the SERR depends on the beam length for a given crack length, especially for long crack length that a/L is ranged from 0.4 to 0.5. The material properties of the core materials on SERR are also investigated. By comparing with the finite element method (FEM), the deflections, compliances and SERRs in the CSB obtained by RZT are more accurate than those by FSDT. It is found that, for the cases of the core with very small shear modulus, the RZT gives correct results that are validated by FEM. For such cases, the FSDT gives incorrect calculations for SERR due to the lack of the zigzag model. The results arose in this study show the superior advantages of the use of the RZT in the SERR calculation of CSB specimen. Cracked sandwich beam (CSB) Refined zigzag theory (RZT) Strain energy release rate (SERR) Dai, Wei-Lian verfasserin aut Enthalten in Theoretical and applied fracture mechanics Amsterdam : North-Holland, 1984 107 Online-Ressource (DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 0167-8442 nnns volume:107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 107 |
allfields_unstemmed |
10.1016/j.tafmec.2020.102504 doi (DE-627)ELV003912248 (ELSEVIER)S0167-8442(19)30520-8 DE-627 ger DE-627 rda eng 670 DE-600 51.32 bkl Chen, Chung-De verfasserin aut The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature survey reveals that SERR of the CSB can be determined by the first-order shear deformation theory (FSDT). However, the accuracy of the results in FSDT is limited due to the lack of zigzag phenomenon. In this paper, we re-solve the CSB based on the refined zigzag theory (RZT), in which the kinematics of the displacements are assumed to have zigzag characteristic. The kinematic variables of the displacements can be determined from solving the governing equations of RZT in conjunction with the boundary conditions and continuity conditions of the CSB, and then SERR can be calculated by the compliance method. We show that for sandwich beams with slender aspect ratio (large L/h) or with thin face sheet (large rh ), the FSDT can provide a satisfactory results due to the insignificant zigzag displacements. Otherwise for small L/h or small rh , the RZT should be used to take the significant zigzag displacements into consideration. For a given crack length, the FSDT give a result that the SERR is independent of the beam length. By using the RZT, it is found that the SERR depends on the beam length for a given crack length, especially for long crack length that a/L is ranged from 0.4 to 0.5. The material properties of the core materials on SERR are also investigated. By comparing with the finite element method (FEM), the deflections, compliances and SERRs in the CSB obtained by RZT are more accurate than those by FSDT. It is found that, for the cases of the core with very small shear modulus, the RZT gives correct results that are validated by FEM. For such cases, the FSDT gives incorrect calculations for SERR due to the lack of the zigzag model. The results arose in this study show the superior advantages of the use of the RZT in the SERR calculation of CSB specimen. Cracked sandwich beam (CSB) Refined zigzag theory (RZT) Strain energy release rate (SERR) Dai, Wei-Lian verfasserin aut Enthalten in Theoretical and applied fracture mechanics Amsterdam : North-Holland, 1984 107 Online-Ressource (DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 0167-8442 nnns volume:107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 107 |
allfieldsGer |
10.1016/j.tafmec.2020.102504 doi (DE-627)ELV003912248 (ELSEVIER)S0167-8442(19)30520-8 DE-627 ger DE-627 rda eng 670 DE-600 51.32 bkl Chen, Chung-De verfasserin aut The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature survey reveals that SERR of the CSB can be determined by the first-order shear deformation theory (FSDT). However, the accuracy of the results in FSDT is limited due to the lack of zigzag phenomenon. In this paper, we re-solve the CSB based on the refined zigzag theory (RZT), in which the kinematics of the displacements are assumed to have zigzag characteristic. The kinematic variables of the displacements can be determined from solving the governing equations of RZT in conjunction with the boundary conditions and continuity conditions of the CSB, and then SERR can be calculated by the compliance method. We show that for sandwich beams with slender aspect ratio (large L/h) or with thin face sheet (large rh ), the FSDT can provide a satisfactory results due to the insignificant zigzag displacements. Otherwise for small L/h or small rh , the RZT should be used to take the significant zigzag displacements into consideration. For a given crack length, the FSDT give a result that the SERR is independent of the beam length. By using the RZT, it is found that the SERR depends on the beam length for a given crack length, especially for long crack length that a/L is ranged from 0.4 to 0.5. The material properties of the core materials on SERR are also investigated. By comparing with the finite element method (FEM), the deflections, compliances and SERRs in the CSB obtained by RZT are more accurate than those by FSDT. It is found that, for the cases of the core with very small shear modulus, the RZT gives correct results that are validated by FEM. For such cases, the FSDT gives incorrect calculations for SERR due to the lack of the zigzag model. The results arose in this study show the superior advantages of the use of the RZT in the SERR calculation of CSB specimen. Cracked sandwich beam (CSB) Refined zigzag theory (RZT) Strain energy release rate (SERR) Dai, Wei-Lian verfasserin aut Enthalten in Theoretical and applied fracture mechanics Amsterdam : North-Holland, 1984 107 Online-Ressource (DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 0167-8442 nnns volume:107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 107 |
allfieldsSound |
10.1016/j.tafmec.2020.102504 doi (DE-627)ELV003912248 (ELSEVIER)S0167-8442(19)30520-8 DE-627 ger DE-627 rda eng 670 DE-600 51.32 bkl Chen, Chung-De verfasserin aut The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature survey reveals that SERR of the CSB can be determined by the first-order shear deformation theory (FSDT). However, the accuracy of the results in FSDT is limited due to the lack of zigzag phenomenon. In this paper, we re-solve the CSB based on the refined zigzag theory (RZT), in which the kinematics of the displacements are assumed to have zigzag characteristic. The kinematic variables of the displacements can be determined from solving the governing equations of RZT in conjunction with the boundary conditions and continuity conditions of the CSB, and then SERR can be calculated by the compliance method. We show that for sandwich beams with slender aspect ratio (large L/h) or with thin face sheet (large rh ), the FSDT can provide a satisfactory results due to the insignificant zigzag displacements. Otherwise for small L/h or small rh , the RZT should be used to take the significant zigzag displacements into consideration. For a given crack length, the FSDT give a result that the SERR is independent of the beam length. By using the RZT, it is found that the SERR depends on the beam length for a given crack length, especially for long crack length that a/L is ranged from 0.4 to 0.5. The material properties of the core materials on SERR are also investigated. By comparing with the finite element method (FEM), the deflections, compliances and SERRs in the CSB obtained by RZT are more accurate than those by FSDT. It is found that, for the cases of the core with very small shear modulus, the RZT gives correct results that are validated by FEM. For such cases, the FSDT gives incorrect calculations for SERR due to the lack of the zigzag model. The results arose in this study show the superior advantages of the use of the RZT in the SERR calculation of CSB specimen. Cracked sandwich beam (CSB) Refined zigzag theory (RZT) Strain energy release rate (SERR) Dai, Wei-Lian verfasserin aut Enthalten in Theoretical and applied fracture mechanics Amsterdam : North-Holland, 1984 107 Online-Ressource (DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 0167-8442 nnns volume:107 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 107 |
language |
English |
source |
Enthalten in Theoretical and applied fracture mechanics 107 volume:107 |
sourceStr |
Enthalten in Theoretical and applied fracture mechanics 107 volume:107 |
format_phy_str_mv |
Article |
bklname |
Werkstoffmechanik |
institution |
findex.gbv.de |
topic_facet |
Cracked sandwich beam (CSB) Refined zigzag theory (RZT) Strain energy release rate (SERR) |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Theoretical and applied fracture mechanics |
authorswithroles_txt_mv |
Chen, Chung-De @@aut@@ Dai, Wei-Lian @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320514021 |
dewey-sort |
3670 |
id |
ELV003912248 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003912248</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144449.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tafmec.2020.102504</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003912248</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-8442(19)30520-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Chung-De</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature survey reveals that SERR of the CSB can be determined by the first-order shear deformation theory (FSDT). However, the accuracy of the results in FSDT is limited due to the lack of zigzag phenomenon. In this paper, we re-solve the CSB based on the refined zigzag theory (RZT), in which the kinematics of the displacements are assumed to have zigzag characteristic. The kinematic variables of the displacements can be determined from solving the governing equations of RZT in conjunction with the boundary conditions and continuity conditions of the CSB, and then SERR can be calculated by the compliance method. We show that for sandwich beams with slender aspect ratio (large L/h) or with thin face sheet (large rh ), the FSDT can provide a satisfactory results due to the insignificant zigzag displacements. Otherwise for small L/h or small rh , the RZT should be used to take the significant zigzag displacements into consideration. For a given crack length, the FSDT give a result that the SERR is independent of the beam length. By using the RZT, it is found that the SERR depends on the beam length for a given crack length, especially for long crack length that a/L is ranged from 0.4 to 0.5. The material properties of the core materials on SERR are also investigated. By comparing with the finite element method (FEM), the deflections, compliances and SERRs in the CSB obtained by RZT are more accurate than those by FSDT. It is found that, for the cases of the core with very small shear modulus, the RZT gives correct results that are validated by FEM. For such cases, the FSDT gives incorrect calculations for SERR due to the lack of the zigzag model. The results arose in this study show the superior advantages of the use of the RZT in the SERR calculation of CSB specimen.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cracked sandwich beam (CSB)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Refined zigzag theory (RZT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain energy release rate (SERR)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Wei-Lian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and applied fracture mechanics</subfield><subfield code="d">Amsterdam : North-Holland, 1984</subfield><subfield code="g">107</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320514021</subfield><subfield code="w">(DE-600)2013739-4</subfield><subfield code="w">(DE-576)259484814</subfield><subfield code="x">0167-8442</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">107</subfield></datafield></record></collection>
|
author |
Chen, Chung-De |
spellingShingle |
Chen, Chung-De ddc 670 bkl 51.32 misc Cracked sandwich beam (CSB) misc Refined zigzag theory (RZT) misc Strain energy release rate (SERR) The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory |
authorStr |
Chen, Chung-De |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320514021 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0167-8442 |
topic_title |
670 DE-600 51.32 bkl The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory Cracked sandwich beam (CSB) Refined zigzag theory (RZT) Strain energy release rate (SERR) |
topic |
ddc 670 bkl 51.32 misc Cracked sandwich beam (CSB) misc Refined zigzag theory (RZT) misc Strain energy release rate (SERR) |
topic_unstemmed |
ddc 670 bkl 51.32 misc Cracked sandwich beam (CSB) misc Refined zigzag theory (RZT) misc Strain energy release rate (SERR) |
topic_browse |
ddc 670 bkl 51.32 misc Cracked sandwich beam (CSB) misc Refined zigzag theory (RZT) misc Strain energy release rate (SERR) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Theoretical and applied fracture mechanics |
hierarchy_parent_id |
320514021 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Theoretical and applied fracture mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 |
title |
The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory |
ctrlnum |
(DE-627)ELV003912248 (ELSEVIER)S0167-8442(19)30520-8 |
title_full |
The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory |
author_sort |
Chen, Chung-De |
journal |
Theoretical and applied fracture mechanics |
journalStr |
Theoretical and applied fracture mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Chen, Chung-De Dai, Wei-Lian |
container_volume |
107 |
class |
670 DE-600 51.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Chung-De |
doi_str_mv |
10.1016/j.tafmec.2020.102504 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
the analysis of mode ii strain energy release rate in a cracked sandwich beam based on the refined zigzag theory |
title_auth |
The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory |
abstract |
In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature survey reveals that SERR of the CSB can be determined by the first-order shear deformation theory (FSDT). However, the accuracy of the results in FSDT is limited due to the lack of zigzag phenomenon. In this paper, we re-solve the CSB based on the refined zigzag theory (RZT), in which the kinematics of the displacements are assumed to have zigzag characteristic. The kinematic variables of the displacements can be determined from solving the governing equations of RZT in conjunction with the boundary conditions and continuity conditions of the CSB, and then SERR can be calculated by the compliance method. We show that for sandwich beams with slender aspect ratio (large L/h) or with thin face sheet (large rh ), the FSDT can provide a satisfactory results due to the insignificant zigzag displacements. Otherwise for small L/h or small rh , the RZT should be used to take the significant zigzag displacements into consideration. For a given crack length, the FSDT give a result that the SERR is independent of the beam length. By using the RZT, it is found that the SERR depends on the beam length for a given crack length, especially for long crack length that a/L is ranged from 0.4 to 0.5. The material properties of the core materials on SERR are also investigated. By comparing with the finite element method (FEM), the deflections, compliances and SERRs in the CSB obtained by RZT are more accurate than those by FSDT. It is found that, for the cases of the core with very small shear modulus, the RZT gives correct results that are validated by FEM. For such cases, the FSDT gives incorrect calculations for SERR due to the lack of the zigzag model. The results arose in this study show the superior advantages of the use of the RZT in the SERR calculation of CSB specimen. |
abstractGer |
In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature survey reveals that SERR of the CSB can be determined by the first-order shear deformation theory (FSDT). However, the accuracy of the results in FSDT is limited due to the lack of zigzag phenomenon. In this paper, we re-solve the CSB based on the refined zigzag theory (RZT), in which the kinematics of the displacements are assumed to have zigzag characteristic. The kinematic variables of the displacements can be determined from solving the governing equations of RZT in conjunction with the boundary conditions and continuity conditions of the CSB, and then SERR can be calculated by the compliance method. We show that for sandwich beams with slender aspect ratio (large L/h) or with thin face sheet (large rh ), the FSDT can provide a satisfactory results due to the insignificant zigzag displacements. Otherwise for small L/h or small rh , the RZT should be used to take the significant zigzag displacements into consideration. For a given crack length, the FSDT give a result that the SERR is independent of the beam length. By using the RZT, it is found that the SERR depends on the beam length for a given crack length, especially for long crack length that a/L is ranged from 0.4 to 0.5. The material properties of the core materials on SERR are also investigated. By comparing with the finite element method (FEM), the deflections, compliances and SERRs in the CSB obtained by RZT are more accurate than those by FSDT. It is found that, for the cases of the core with very small shear modulus, the RZT gives correct results that are validated by FEM. For such cases, the FSDT gives incorrect calculations for SERR due to the lack of the zigzag model. The results arose in this study show the superior advantages of the use of the RZT in the SERR calculation of CSB specimen. |
abstract_unstemmed |
In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature survey reveals that SERR of the CSB can be determined by the first-order shear deformation theory (FSDT). However, the accuracy of the results in FSDT is limited due to the lack of zigzag phenomenon. In this paper, we re-solve the CSB based on the refined zigzag theory (RZT), in which the kinematics of the displacements are assumed to have zigzag characteristic. The kinematic variables of the displacements can be determined from solving the governing equations of RZT in conjunction with the boundary conditions and continuity conditions of the CSB, and then SERR can be calculated by the compliance method. We show that for sandwich beams with slender aspect ratio (large L/h) or with thin face sheet (large rh ), the FSDT can provide a satisfactory results due to the insignificant zigzag displacements. Otherwise for small L/h or small rh , the RZT should be used to take the significant zigzag displacements into consideration. For a given crack length, the FSDT give a result that the SERR is independent of the beam length. By using the RZT, it is found that the SERR depends on the beam length for a given crack length, especially for long crack length that a/L is ranged from 0.4 to 0.5. The material properties of the core materials on SERR are also investigated. By comparing with the finite element method (FEM), the deflections, compliances and SERRs in the CSB obtained by RZT are more accurate than those by FSDT. It is found that, for the cases of the core with very small shear modulus, the RZT gives correct results that are validated by FEM. For such cases, the FSDT gives incorrect calculations for SERR due to the lack of the zigzag model. The results arose in this study show the superior advantages of the use of the RZT in the SERR calculation of CSB specimen. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory |
remote_bool |
true |
author2 |
Dai, Wei-Lian |
author2Str |
Dai, Wei-Lian |
ppnlink |
320514021 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.tafmec.2020.102504 |
up_date |
2024-07-06T21:12:41.054Z |
_version_ |
1803865671393607680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003912248</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144449.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tafmec.2020.102504</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003912248</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-8442(19)30520-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Chung-De</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the mode II strain energy release rates (SERR) of a cracked sandwich beam (CSB) subjected to a three-point loading are investigated. Due to the stiff face sheets and soft core, the displacements in the sandwich beam have the zigzag distribution through the thickness. A literature survey reveals that SERR of the CSB can be determined by the first-order shear deformation theory (FSDT). However, the accuracy of the results in FSDT is limited due to the lack of zigzag phenomenon. In this paper, we re-solve the CSB based on the refined zigzag theory (RZT), in which the kinematics of the displacements are assumed to have zigzag characteristic. The kinematic variables of the displacements can be determined from solving the governing equations of RZT in conjunction with the boundary conditions and continuity conditions of the CSB, and then SERR can be calculated by the compliance method. We show that for sandwich beams with slender aspect ratio (large L/h) or with thin face sheet (large rh ), the FSDT can provide a satisfactory results due to the insignificant zigzag displacements. Otherwise for small L/h or small rh , the RZT should be used to take the significant zigzag displacements into consideration. For a given crack length, the FSDT give a result that the SERR is independent of the beam length. By using the RZT, it is found that the SERR depends on the beam length for a given crack length, especially for long crack length that a/L is ranged from 0.4 to 0.5. The material properties of the core materials on SERR are also investigated. By comparing with the finite element method (FEM), the deflections, compliances and SERRs in the CSB obtained by RZT are more accurate than those by FSDT. It is found that, for the cases of the core with very small shear modulus, the RZT gives correct results that are validated by FEM. For such cases, the FSDT gives incorrect calculations for SERR due to the lack of the zigzag model. The results arose in this study show the superior advantages of the use of the RZT in the SERR calculation of CSB specimen.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cracked sandwich beam (CSB)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Refined zigzag theory (RZT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain energy release rate (SERR)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Wei-Lian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and applied fracture mechanics</subfield><subfield code="d">Amsterdam : North-Holland, 1984</subfield><subfield code="g">107</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320514021</subfield><subfield code="w">(DE-600)2013739-4</subfield><subfield code="w">(DE-576)259484814</subfield><subfield code="x">0167-8442</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">107</subfield></datafield></record></collection>
|
score |
7.4022093 |