Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant
The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability a...
Ausführliche Beschreibung
Autor*in: |
Zhou, Man [verfasserIn] Han, Lansheng [verfasserIn] Lu, Hongwei [verfasserIn] Fu, Cai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computer networks - Amsterdam [u.a.] : Elsevier, 1976, 172 |
---|---|
Übergeordnetes Werk: |
volume:172 |
DOI / URN: |
10.1016/j.comnet.2020.107174 |
---|
Katalog-ID: |
ELV003977145 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003977145 | ||
003 | DE-627 | ||
005 | 20230524145032.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.comnet.2020.107174 |2 doi | |
035 | |a (DE-627)ELV003977145 | ||
035 | |a (ELSEVIER)S1389-1286(19)31187-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q DE-600 |
084 | |a 54.32 |2 bkl | ||
084 | |a 53.76 |2 bkl | ||
100 | 1 | |a Zhou, Man |e verfasserin |4 aut | |
245 | 1 | 0 | |a Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability and timeliness of vehicular communication, which raises serious security threats. In this paper, a distributed collaborative intrusion detection system based on invariant called DCDIV is proposed to identify betray attacks in VANET. Firstly, the paper designs a distributed collaborative detection framework to implement the storage and calculation of big data and the rapid tracking and collection of information. Secondly, considering the strict delay limitation and the high reliability requirement of information transmission between vehicles, a reputation-based cooperative communication method is exploited to establish a stable and reliable communication link, where a novel cluster head vehicle selection method based on global reputation state, traffic density, and link life is presented. Following this, the paper uses the dynamic behavior analysis technology to mine the invariant, which contributes to determine the normal driving characteristics of vehicles, so as to detect malicious behaviors. Finally, this paper utilizes the Stochastic Petri Net to describe the state of the system and its dynamic transfer, and then defines the security state of the system. The simulation results demonstrate that the DCDIV has higher detection rate, lower false alarm rate, and faster attack detection rate compared with existing methods, and ensures system security during the detection process. | ||
650 | 4 | |a Distributed collaborative intrusion detection | |
650 | 4 | |a Vehicle Ad Hoc Network | |
650 | 4 | |a Reputation evaluation | |
650 | 4 | |a Invariant detection | |
650 | 4 | |a Stochastic Petri Net | |
700 | 1 | |a Han, Lansheng |e verfasserin |4 aut | |
700 | 1 | |a Lu, Hongwei |e verfasserin |4 aut | |
700 | 1 | |a Fu, Cai |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computer networks |d Amsterdam [u.a.] : Elsevier, 1976 |g 172 |h Online-Ressource |w (DE-627)306652749 |w (DE-600)1499744-7 |w (DE-576)081954360 |7 nnns |
773 | 1 | 8 | |g volume:172 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.32 |j Rechnerkommunikation |
936 | b | k | |a 53.76 |j Kommunikationsdienste |j Fernmeldetechnik |
951 | |a AR | ||
952 | |d 172 |
author_variant |
m z mz l h lh h l hl c f cf |
---|---|
matchkey_str |
zhoumanhanlanshengluhongweifucai:2020----:itiueclaoaienrsodtcinytmovhclrdon |
hierarchy_sort_str |
2020 |
bklnumber |
54.32 53.76 |
publishDate |
2020 |
allfields |
10.1016/j.comnet.2020.107174 doi (DE-627)ELV003977145 (ELSEVIER)S1389-1286(19)31187-9 DE-627 ger DE-627 rda eng 004 620 DE-600 54.32 bkl 53.76 bkl Zhou, Man verfasserin aut Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability and timeliness of vehicular communication, which raises serious security threats. In this paper, a distributed collaborative intrusion detection system based on invariant called DCDIV is proposed to identify betray attacks in VANET. Firstly, the paper designs a distributed collaborative detection framework to implement the storage and calculation of big data and the rapid tracking and collection of information. Secondly, considering the strict delay limitation and the high reliability requirement of information transmission between vehicles, a reputation-based cooperative communication method is exploited to establish a stable and reliable communication link, where a novel cluster head vehicle selection method based on global reputation state, traffic density, and link life is presented. Following this, the paper uses the dynamic behavior analysis technology to mine the invariant, which contributes to determine the normal driving characteristics of vehicles, so as to detect malicious behaviors. Finally, this paper utilizes the Stochastic Petri Net to describe the state of the system and its dynamic transfer, and then defines the security state of the system. The simulation results demonstrate that the DCDIV has higher detection rate, lower false alarm rate, and faster attack detection rate compared with existing methods, and ensures system security during the detection process. Distributed collaborative intrusion detection Vehicle Ad Hoc Network Reputation evaluation Invariant detection Stochastic Petri Net Han, Lansheng verfasserin aut Lu, Hongwei verfasserin aut Fu, Cai verfasserin aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 172 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:172 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.32 Rechnerkommunikation 53.76 Kommunikationsdienste Fernmeldetechnik AR 172 |
spelling |
10.1016/j.comnet.2020.107174 doi (DE-627)ELV003977145 (ELSEVIER)S1389-1286(19)31187-9 DE-627 ger DE-627 rda eng 004 620 DE-600 54.32 bkl 53.76 bkl Zhou, Man verfasserin aut Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability and timeliness of vehicular communication, which raises serious security threats. In this paper, a distributed collaborative intrusion detection system based on invariant called DCDIV is proposed to identify betray attacks in VANET. Firstly, the paper designs a distributed collaborative detection framework to implement the storage and calculation of big data and the rapid tracking and collection of information. Secondly, considering the strict delay limitation and the high reliability requirement of information transmission between vehicles, a reputation-based cooperative communication method is exploited to establish a stable and reliable communication link, where a novel cluster head vehicle selection method based on global reputation state, traffic density, and link life is presented. Following this, the paper uses the dynamic behavior analysis technology to mine the invariant, which contributes to determine the normal driving characteristics of vehicles, so as to detect malicious behaviors. Finally, this paper utilizes the Stochastic Petri Net to describe the state of the system and its dynamic transfer, and then defines the security state of the system. The simulation results demonstrate that the DCDIV has higher detection rate, lower false alarm rate, and faster attack detection rate compared with existing methods, and ensures system security during the detection process. Distributed collaborative intrusion detection Vehicle Ad Hoc Network Reputation evaluation Invariant detection Stochastic Petri Net Han, Lansheng verfasserin aut Lu, Hongwei verfasserin aut Fu, Cai verfasserin aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 172 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:172 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.32 Rechnerkommunikation 53.76 Kommunikationsdienste Fernmeldetechnik AR 172 |
allfields_unstemmed |
10.1016/j.comnet.2020.107174 doi (DE-627)ELV003977145 (ELSEVIER)S1389-1286(19)31187-9 DE-627 ger DE-627 rda eng 004 620 DE-600 54.32 bkl 53.76 bkl Zhou, Man verfasserin aut Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability and timeliness of vehicular communication, which raises serious security threats. In this paper, a distributed collaborative intrusion detection system based on invariant called DCDIV is proposed to identify betray attacks in VANET. Firstly, the paper designs a distributed collaborative detection framework to implement the storage and calculation of big data and the rapid tracking and collection of information. Secondly, considering the strict delay limitation and the high reliability requirement of information transmission between vehicles, a reputation-based cooperative communication method is exploited to establish a stable and reliable communication link, where a novel cluster head vehicle selection method based on global reputation state, traffic density, and link life is presented. Following this, the paper uses the dynamic behavior analysis technology to mine the invariant, which contributes to determine the normal driving characteristics of vehicles, so as to detect malicious behaviors. Finally, this paper utilizes the Stochastic Petri Net to describe the state of the system and its dynamic transfer, and then defines the security state of the system. The simulation results demonstrate that the DCDIV has higher detection rate, lower false alarm rate, and faster attack detection rate compared with existing methods, and ensures system security during the detection process. Distributed collaborative intrusion detection Vehicle Ad Hoc Network Reputation evaluation Invariant detection Stochastic Petri Net Han, Lansheng verfasserin aut Lu, Hongwei verfasserin aut Fu, Cai verfasserin aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 172 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:172 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.32 Rechnerkommunikation 53.76 Kommunikationsdienste Fernmeldetechnik AR 172 |
allfieldsGer |
10.1016/j.comnet.2020.107174 doi (DE-627)ELV003977145 (ELSEVIER)S1389-1286(19)31187-9 DE-627 ger DE-627 rda eng 004 620 DE-600 54.32 bkl 53.76 bkl Zhou, Man verfasserin aut Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability and timeliness of vehicular communication, which raises serious security threats. In this paper, a distributed collaborative intrusion detection system based on invariant called DCDIV is proposed to identify betray attacks in VANET. Firstly, the paper designs a distributed collaborative detection framework to implement the storage and calculation of big data and the rapid tracking and collection of information. Secondly, considering the strict delay limitation and the high reliability requirement of information transmission between vehicles, a reputation-based cooperative communication method is exploited to establish a stable and reliable communication link, where a novel cluster head vehicle selection method based on global reputation state, traffic density, and link life is presented. Following this, the paper uses the dynamic behavior analysis technology to mine the invariant, which contributes to determine the normal driving characteristics of vehicles, so as to detect malicious behaviors. Finally, this paper utilizes the Stochastic Petri Net to describe the state of the system and its dynamic transfer, and then defines the security state of the system. The simulation results demonstrate that the DCDIV has higher detection rate, lower false alarm rate, and faster attack detection rate compared with existing methods, and ensures system security during the detection process. Distributed collaborative intrusion detection Vehicle Ad Hoc Network Reputation evaluation Invariant detection Stochastic Petri Net Han, Lansheng verfasserin aut Lu, Hongwei verfasserin aut Fu, Cai verfasserin aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 172 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:172 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.32 Rechnerkommunikation 53.76 Kommunikationsdienste Fernmeldetechnik AR 172 |
allfieldsSound |
10.1016/j.comnet.2020.107174 doi (DE-627)ELV003977145 (ELSEVIER)S1389-1286(19)31187-9 DE-627 ger DE-627 rda eng 004 620 DE-600 54.32 bkl 53.76 bkl Zhou, Man verfasserin aut Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability and timeliness of vehicular communication, which raises serious security threats. In this paper, a distributed collaborative intrusion detection system based on invariant called DCDIV is proposed to identify betray attacks in VANET. Firstly, the paper designs a distributed collaborative detection framework to implement the storage and calculation of big data and the rapid tracking and collection of information. Secondly, considering the strict delay limitation and the high reliability requirement of information transmission between vehicles, a reputation-based cooperative communication method is exploited to establish a stable and reliable communication link, where a novel cluster head vehicle selection method based on global reputation state, traffic density, and link life is presented. Following this, the paper uses the dynamic behavior analysis technology to mine the invariant, which contributes to determine the normal driving characteristics of vehicles, so as to detect malicious behaviors. Finally, this paper utilizes the Stochastic Petri Net to describe the state of the system and its dynamic transfer, and then defines the security state of the system. The simulation results demonstrate that the DCDIV has higher detection rate, lower false alarm rate, and faster attack detection rate compared with existing methods, and ensures system security during the detection process. Distributed collaborative intrusion detection Vehicle Ad Hoc Network Reputation evaluation Invariant detection Stochastic Petri Net Han, Lansheng verfasserin aut Lu, Hongwei verfasserin aut Fu, Cai verfasserin aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 172 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:172 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.32 Rechnerkommunikation 53.76 Kommunikationsdienste Fernmeldetechnik AR 172 |
language |
English |
source |
Enthalten in Computer networks 172 volume:172 |
sourceStr |
Enthalten in Computer networks 172 volume:172 |
format_phy_str_mv |
Article |
bklname |
Rechnerkommunikation Kommunikationsdienste Fernmeldetechnik |
institution |
findex.gbv.de |
topic_facet |
Distributed collaborative intrusion detection Vehicle Ad Hoc Network Reputation evaluation Invariant detection Stochastic Petri Net |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Computer networks |
authorswithroles_txt_mv |
Zhou, Man @@aut@@ Han, Lansheng @@aut@@ Lu, Hongwei @@aut@@ Fu, Cai @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306652749 |
dewey-sort |
14 |
id |
ELV003977145 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003977145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145032.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.comnet.2020.107174</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003977145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1389-1286(19)31187-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Man</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability and timeliness of vehicular communication, which raises serious security threats. In this paper, a distributed collaborative intrusion detection system based on invariant called DCDIV is proposed to identify betray attacks in VANET. Firstly, the paper designs a distributed collaborative detection framework to implement the storage and calculation of big data and the rapid tracking and collection of information. Secondly, considering the strict delay limitation and the high reliability requirement of information transmission between vehicles, a reputation-based cooperative communication method is exploited to establish a stable and reliable communication link, where a novel cluster head vehicle selection method based on global reputation state, traffic density, and link life is presented. Following this, the paper uses the dynamic behavior analysis technology to mine the invariant, which contributes to determine the normal driving characteristics of vehicles, so as to detect malicious behaviors. Finally, this paper utilizes the Stochastic Petri Net to describe the state of the system and its dynamic transfer, and then defines the security state of the system. The simulation results demonstrate that the DCDIV has higher detection rate, lower false alarm rate, and faster attack detection rate compared with existing methods, and ensures system security during the detection process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed collaborative intrusion detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicle Ad Hoc Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reputation evaluation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic Petri Net</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Lansheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Hongwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computer networks</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1976</subfield><subfield code="g">172</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306652749</subfield><subfield code="w">(DE-600)1499744-7</subfield><subfield code="w">(DE-576)081954360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:172</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32</subfield><subfield code="j">Rechnerkommunikation</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.76</subfield><subfield code="j">Kommunikationsdienste</subfield><subfield code="j">Fernmeldetechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">172</subfield></datafield></record></collection>
|
author |
Zhou, Man |
spellingShingle |
Zhou, Man ddc 004 bkl 54.32 bkl 53.76 misc Distributed collaborative intrusion detection misc Vehicle Ad Hoc Network misc Reputation evaluation misc Invariant detection misc Stochastic Petri Net Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant |
authorStr |
Zhou, Man |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306652749 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 620 DE-600 54.32 bkl 53.76 bkl Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant Distributed collaborative intrusion detection Vehicle Ad Hoc Network Reputation evaluation Invariant detection Stochastic Petri Net |
topic |
ddc 004 bkl 54.32 bkl 53.76 misc Distributed collaborative intrusion detection misc Vehicle Ad Hoc Network misc Reputation evaluation misc Invariant detection misc Stochastic Petri Net |
topic_unstemmed |
ddc 004 bkl 54.32 bkl 53.76 misc Distributed collaborative intrusion detection misc Vehicle Ad Hoc Network misc Reputation evaluation misc Invariant detection misc Stochastic Petri Net |
topic_browse |
ddc 004 bkl 54.32 bkl 53.76 misc Distributed collaborative intrusion detection misc Vehicle Ad Hoc Network misc Reputation evaluation misc Invariant detection misc Stochastic Petri Net |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computer networks |
hierarchy_parent_id |
306652749 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
Computer networks |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 |
title |
Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant |
ctrlnum |
(DE-627)ELV003977145 (ELSEVIER)S1389-1286(19)31187-9 |
title_full |
Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant |
author_sort |
Zhou, Man |
journal |
Computer networks |
journalStr |
Computer networks |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Zhou, Man Han, Lansheng Lu, Hongwei Fu, Cai |
container_volume |
172 |
class |
004 620 DE-600 54.32 bkl 53.76 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Man |
doi_str_mv |
10.1016/j.comnet.2020.107174 |
dewey-full |
004 620 |
author2-role |
verfasserin |
title_sort |
distributed collaborative intrusion detection system for vehicular ad hoc networks based on invariant |
title_auth |
Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant |
abstract |
The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability and timeliness of vehicular communication, which raises serious security threats. In this paper, a distributed collaborative intrusion detection system based on invariant called DCDIV is proposed to identify betray attacks in VANET. Firstly, the paper designs a distributed collaborative detection framework to implement the storage and calculation of big data and the rapid tracking and collection of information. Secondly, considering the strict delay limitation and the high reliability requirement of information transmission between vehicles, a reputation-based cooperative communication method is exploited to establish a stable and reliable communication link, where a novel cluster head vehicle selection method based on global reputation state, traffic density, and link life is presented. Following this, the paper uses the dynamic behavior analysis technology to mine the invariant, which contributes to determine the normal driving characteristics of vehicles, so as to detect malicious behaviors. Finally, this paper utilizes the Stochastic Petri Net to describe the state of the system and its dynamic transfer, and then defines the security state of the system. The simulation results demonstrate that the DCDIV has higher detection rate, lower false alarm rate, and faster attack detection rate compared with existing methods, and ensures system security during the detection process. |
abstractGer |
The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability and timeliness of vehicular communication, which raises serious security threats. In this paper, a distributed collaborative intrusion detection system based on invariant called DCDIV is proposed to identify betray attacks in VANET. Firstly, the paper designs a distributed collaborative detection framework to implement the storage and calculation of big data and the rapid tracking and collection of information. Secondly, considering the strict delay limitation and the high reliability requirement of information transmission between vehicles, a reputation-based cooperative communication method is exploited to establish a stable and reliable communication link, where a novel cluster head vehicle selection method based on global reputation state, traffic density, and link life is presented. Following this, the paper uses the dynamic behavior analysis technology to mine the invariant, which contributes to determine the normal driving characteristics of vehicles, so as to detect malicious behaviors. Finally, this paper utilizes the Stochastic Petri Net to describe the state of the system and its dynamic transfer, and then defines the security state of the system. The simulation results demonstrate that the DCDIV has higher detection rate, lower false alarm rate, and faster attack detection rate compared with existing methods, and ensures system security during the detection process. |
abstract_unstemmed |
The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability and timeliness of vehicular communication, which raises serious security threats. In this paper, a distributed collaborative intrusion detection system based on invariant called DCDIV is proposed to identify betray attacks in VANET. Firstly, the paper designs a distributed collaborative detection framework to implement the storage and calculation of big data and the rapid tracking and collection of information. Secondly, considering the strict delay limitation and the high reliability requirement of information transmission between vehicles, a reputation-based cooperative communication method is exploited to establish a stable and reliable communication link, where a novel cluster head vehicle selection method based on global reputation state, traffic density, and link life is presented. Following this, the paper uses the dynamic behavior analysis technology to mine the invariant, which contributes to determine the normal driving characteristics of vehicles, so as to detect malicious behaviors. Finally, this paper utilizes the Stochastic Petri Net to describe the state of the system and its dynamic transfer, and then defines the security state of the system. The simulation results demonstrate that the DCDIV has higher detection rate, lower false alarm rate, and faster attack detection rate compared with existing methods, and ensures system security during the detection process. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant |
remote_bool |
true |
author2 |
Han, Lansheng Lu, Hongwei Fu, Cai |
author2Str |
Han, Lansheng Lu, Hongwei Fu, Cai |
ppnlink |
306652749 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.comnet.2020.107174 |
up_date |
2024-07-06T21:25:57.140Z |
_version_ |
1803866506150281216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003977145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145032.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.comnet.2020.107174</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003977145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1389-1286(19)31187-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Man</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on invariant</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The characteristics of high mobility and rapid topology change of the Vehicle Ad Hoc Network (VANET) makes it vulnerable to various malicious attacks. The adversary utilizes the instability of the communication link induced by the frequent changes of topology structure to undermine the reliability and timeliness of vehicular communication, which raises serious security threats. In this paper, a distributed collaborative intrusion detection system based on invariant called DCDIV is proposed to identify betray attacks in VANET. Firstly, the paper designs a distributed collaborative detection framework to implement the storage and calculation of big data and the rapid tracking and collection of information. Secondly, considering the strict delay limitation and the high reliability requirement of information transmission between vehicles, a reputation-based cooperative communication method is exploited to establish a stable and reliable communication link, where a novel cluster head vehicle selection method based on global reputation state, traffic density, and link life is presented. Following this, the paper uses the dynamic behavior analysis technology to mine the invariant, which contributes to determine the normal driving characteristics of vehicles, so as to detect malicious behaviors. Finally, this paper utilizes the Stochastic Petri Net to describe the state of the system and its dynamic transfer, and then defines the security state of the system. The simulation results demonstrate that the DCDIV has higher detection rate, lower false alarm rate, and faster attack detection rate compared with existing methods, and ensures system security during the detection process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed collaborative intrusion detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicle Ad Hoc Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reputation evaluation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic Petri Net</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Lansheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Hongwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computer networks</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1976</subfield><subfield code="g">172</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306652749</subfield><subfield code="w">(DE-600)1499744-7</subfield><subfield code="w">(DE-576)081954360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:172</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32</subfield><subfield code="j">Rechnerkommunikation</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.76</subfield><subfield code="j">Kommunikationsdienste</subfield><subfield code="j">Fernmeldetechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">172</subfield></datafield></record></collection>
|
score |
7.4023495 |