Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material
In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal...
Ausführliche Beschreibung
Autor*in: |
Santos, Géssica O.S. [verfasserIn] Gonzaga, Isabelle M.D. [verfasserIn] Eguiluz, Katlin I.B. [verfasserIn] Salazar-Banda, Giancarlo R. [verfasserIn] Saez, Cristina [verfasserIn] Rodrigo, Manuel A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of electroanalytical chemistry - New York, NY [u.a.] : Elsevier, 1959, 864 |
---|---|
Übergeordnetes Werk: |
volume:864 |
DOI / URN: |
10.1016/j.jelechem.2020.114084 |
---|
Katalog-ID: |
ELV003993094 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV003993094 | ||
003 | DE-627 | ||
005 | 20230524124940.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jelechem.2020.114084 |2 doi | |
035 | |a (DE-627)ELV003993094 | ||
035 | |a (ELSEVIER)S1572-6657(20)30267-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 620 |q DE-600 |
084 | |a 35.27 |2 bkl | ||
100 | 1 | |a Santos, Géssica O.S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal conditions, it was carried out EC and PhEC degradations in chloride medium, at current densities ranging from 30 to 100 mA cm−2 during 1 h (0.8–2.7 A h L−1), using as anodes MMO-RuO2TiO2, MMO-RuO2IrO2, MMO-IrO2Ta2O5 and boron-doped diamond (BDD). Results show better efficiencies on clopyralid removal for MMO-RuO2IrO2 and BDD anodes at lower current densities. Then, the influence of all anodes on clopyralid transformation was evaluated, extending the electrolysis and photoelectrolysis for 8 h applying 30 mA cm−2 (6.4 A h cm−3). At these conditions, better outcomes are observed for PhEC degradation, where complete pollutant removal is attained for BDD anode and 88.7% for MMO-RuO2IrO2, while COD removal is 47.7% for MMO and 43.1% for BDD anode. Then, short-term biodegradability tests, conducted for EC and PhEC processes, pointed out that MMO-RuO2TiO2 is the most promising anode material, being capable of improving biodegradability in 48.2% and 53% for EC and PhEC degradation, respectively. The toxicity of treated solutions using MMO-RuO2TiO2 and BDD anodes in both EC and PhEC degradation were compared, employing the inhibitory effect in the bioluminescence of marine bacteria Vibrio Fisheri. Toxicity assessments show that toxicity significantly reduces by using the MMO-RuO2TiO2 in NaCl and Na2SO4 medium for both processes. Finally, this study demonstrates that photoelectrolysis with MMO anodes was the most effective strategy in order to increase biodegradability in chloride media, as well as to reduce the toxicity of the treated waste. | ||
650 | 4 | |a Electrolysis | |
650 | 4 | |a Photoelectrolysis | |
650 | 4 | |a Clopyralid | |
650 | 4 | |a BDD | |
650 | 4 | |a MMO | |
700 | 1 | |a Gonzaga, Isabelle M.D. |e verfasserin |4 aut | |
700 | 1 | |a Eguiluz, Katlin I.B. |e verfasserin |4 aut | |
700 | 1 | |a Salazar-Banda, Giancarlo R. |e verfasserin |4 aut | |
700 | 1 | |a Saez, Cristina |e verfasserin |0 (orcid)0000-0001-6652-0496 |4 aut | |
700 | 1 | |a Rodrigo, Manuel A. |e verfasserin |0 (orcid)0000-0003-2518-8436 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of electroanalytical chemistry |d New York, NY [u.a.] : Elsevier, 1959 |g 864 |h Online-Ressource |w (DE-627)302466533 |w (DE-600)1491150-4 |w (DE-576)098614797 |x 1873-2569 |7 nnns |
773 | 1 | 8 | |g volume:864 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.27 |j Elektrochemische Analyse |
951 | |a AR | ||
952 | |d 864 |
author_variant |
g o s go gos i m g im img k i e ki kie g r s b grs grsb c s cs m a r ma mar |
---|---|
matchkey_str |
article:18732569:2020----::mrvnboerdbltocoyaiwsebpoolcrlss |
hierarchy_sort_str |
2020 |
bklnumber |
35.27 |
publishDate |
2020 |
allfields |
10.1016/j.jelechem.2020.114084 doi (DE-627)ELV003993094 (ELSEVIER)S1572-6657(20)30267-8 DE-627 ger DE-627 rda eng 540 620 DE-600 35.27 bkl Santos, Géssica O.S. verfasserin aut Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal conditions, it was carried out EC and PhEC degradations in chloride medium, at current densities ranging from 30 to 100 mA cm−2 during 1 h (0.8–2.7 A h L−1), using as anodes MMO-RuO2TiO2, MMO-RuO2IrO2, MMO-IrO2Ta2O5 and boron-doped diamond (BDD). Results show better efficiencies on clopyralid removal for MMO-RuO2IrO2 and BDD anodes at lower current densities. Then, the influence of all anodes on clopyralid transformation was evaluated, extending the electrolysis and photoelectrolysis for 8 h applying 30 mA cm−2 (6.4 A h cm−3). At these conditions, better outcomes are observed for PhEC degradation, where complete pollutant removal is attained for BDD anode and 88.7% for MMO-RuO2IrO2, while COD removal is 47.7% for MMO and 43.1% for BDD anode. Then, short-term biodegradability tests, conducted for EC and PhEC processes, pointed out that MMO-RuO2TiO2 is the most promising anode material, being capable of improving biodegradability in 48.2% and 53% for EC and PhEC degradation, respectively. The toxicity of treated solutions using MMO-RuO2TiO2 and BDD anodes in both EC and PhEC degradation were compared, employing the inhibitory effect in the bioluminescence of marine bacteria Vibrio Fisheri. Toxicity assessments show that toxicity significantly reduces by using the MMO-RuO2TiO2 in NaCl and Na2SO4 medium for both processes. Finally, this study demonstrates that photoelectrolysis with MMO anodes was the most effective strategy in order to increase biodegradability in chloride media, as well as to reduce the toxicity of the treated waste. Electrolysis Photoelectrolysis Clopyralid BDD MMO Gonzaga, Isabelle M.D. verfasserin aut Eguiluz, Katlin I.B. verfasserin aut Salazar-Banda, Giancarlo R. verfasserin aut Saez, Cristina verfasserin (orcid)0000-0001-6652-0496 aut Rodrigo, Manuel A. verfasserin (orcid)0000-0003-2518-8436 aut Enthalten in Journal of electroanalytical chemistry New York, NY [u.a.] : Elsevier, 1959 864 Online-Ressource (DE-627)302466533 (DE-600)1491150-4 (DE-576)098614797 1873-2569 nnns volume:864 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.27 Elektrochemische Analyse AR 864 |
spelling |
10.1016/j.jelechem.2020.114084 doi (DE-627)ELV003993094 (ELSEVIER)S1572-6657(20)30267-8 DE-627 ger DE-627 rda eng 540 620 DE-600 35.27 bkl Santos, Géssica O.S. verfasserin aut Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal conditions, it was carried out EC and PhEC degradations in chloride medium, at current densities ranging from 30 to 100 mA cm−2 during 1 h (0.8–2.7 A h L−1), using as anodes MMO-RuO2TiO2, MMO-RuO2IrO2, MMO-IrO2Ta2O5 and boron-doped diamond (BDD). Results show better efficiencies on clopyralid removal for MMO-RuO2IrO2 and BDD anodes at lower current densities. Then, the influence of all anodes on clopyralid transformation was evaluated, extending the electrolysis and photoelectrolysis for 8 h applying 30 mA cm−2 (6.4 A h cm−3). At these conditions, better outcomes are observed for PhEC degradation, where complete pollutant removal is attained for BDD anode and 88.7% for MMO-RuO2IrO2, while COD removal is 47.7% for MMO and 43.1% for BDD anode. Then, short-term biodegradability tests, conducted for EC and PhEC processes, pointed out that MMO-RuO2TiO2 is the most promising anode material, being capable of improving biodegradability in 48.2% and 53% for EC and PhEC degradation, respectively. The toxicity of treated solutions using MMO-RuO2TiO2 and BDD anodes in both EC and PhEC degradation were compared, employing the inhibitory effect in the bioluminescence of marine bacteria Vibrio Fisheri. Toxicity assessments show that toxicity significantly reduces by using the MMO-RuO2TiO2 in NaCl and Na2SO4 medium for both processes. Finally, this study demonstrates that photoelectrolysis with MMO anodes was the most effective strategy in order to increase biodegradability in chloride media, as well as to reduce the toxicity of the treated waste. Electrolysis Photoelectrolysis Clopyralid BDD MMO Gonzaga, Isabelle M.D. verfasserin aut Eguiluz, Katlin I.B. verfasserin aut Salazar-Banda, Giancarlo R. verfasserin aut Saez, Cristina verfasserin (orcid)0000-0001-6652-0496 aut Rodrigo, Manuel A. verfasserin (orcid)0000-0003-2518-8436 aut Enthalten in Journal of electroanalytical chemistry New York, NY [u.a.] : Elsevier, 1959 864 Online-Ressource (DE-627)302466533 (DE-600)1491150-4 (DE-576)098614797 1873-2569 nnns volume:864 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.27 Elektrochemische Analyse AR 864 |
allfields_unstemmed |
10.1016/j.jelechem.2020.114084 doi (DE-627)ELV003993094 (ELSEVIER)S1572-6657(20)30267-8 DE-627 ger DE-627 rda eng 540 620 DE-600 35.27 bkl Santos, Géssica O.S. verfasserin aut Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal conditions, it was carried out EC and PhEC degradations in chloride medium, at current densities ranging from 30 to 100 mA cm−2 during 1 h (0.8–2.7 A h L−1), using as anodes MMO-RuO2TiO2, MMO-RuO2IrO2, MMO-IrO2Ta2O5 and boron-doped diamond (BDD). Results show better efficiencies on clopyralid removal for MMO-RuO2IrO2 and BDD anodes at lower current densities. Then, the influence of all anodes on clopyralid transformation was evaluated, extending the electrolysis and photoelectrolysis for 8 h applying 30 mA cm−2 (6.4 A h cm−3). At these conditions, better outcomes are observed for PhEC degradation, where complete pollutant removal is attained for BDD anode and 88.7% for MMO-RuO2IrO2, while COD removal is 47.7% for MMO and 43.1% for BDD anode. Then, short-term biodegradability tests, conducted for EC and PhEC processes, pointed out that MMO-RuO2TiO2 is the most promising anode material, being capable of improving biodegradability in 48.2% and 53% for EC and PhEC degradation, respectively. The toxicity of treated solutions using MMO-RuO2TiO2 and BDD anodes in both EC and PhEC degradation were compared, employing the inhibitory effect in the bioluminescence of marine bacteria Vibrio Fisheri. Toxicity assessments show that toxicity significantly reduces by using the MMO-RuO2TiO2 in NaCl and Na2SO4 medium for both processes. Finally, this study demonstrates that photoelectrolysis with MMO anodes was the most effective strategy in order to increase biodegradability in chloride media, as well as to reduce the toxicity of the treated waste. Electrolysis Photoelectrolysis Clopyralid BDD MMO Gonzaga, Isabelle M.D. verfasserin aut Eguiluz, Katlin I.B. verfasserin aut Salazar-Banda, Giancarlo R. verfasserin aut Saez, Cristina verfasserin (orcid)0000-0001-6652-0496 aut Rodrigo, Manuel A. verfasserin (orcid)0000-0003-2518-8436 aut Enthalten in Journal of electroanalytical chemistry New York, NY [u.a.] : Elsevier, 1959 864 Online-Ressource (DE-627)302466533 (DE-600)1491150-4 (DE-576)098614797 1873-2569 nnns volume:864 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.27 Elektrochemische Analyse AR 864 |
allfieldsGer |
10.1016/j.jelechem.2020.114084 doi (DE-627)ELV003993094 (ELSEVIER)S1572-6657(20)30267-8 DE-627 ger DE-627 rda eng 540 620 DE-600 35.27 bkl Santos, Géssica O.S. verfasserin aut Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal conditions, it was carried out EC and PhEC degradations in chloride medium, at current densities ranging from 30 to 100 mA cm−2 during 1 h (0.8–2.7 A h L−1), using as anodes MMO-RuO2TiO2, MMO-RuO2IrO2, MMO-IrO2Ta2O5 and boron-doped diamond (BDD). Results show better efficiencies on clopyralid removal for MMO-RuO2IrO2 and BDD anodes at lower current densities. Then, the influence of all anodes on clopyralid transformation was evaluated, extending the electrolysis and photoelectrolysis for 8 h applying 30 mA cm−2 (6.4 A h cm−3). At these conditions, better outcomes are observed for PhEC degradation, where complete pollutant removal is attained for BDD anode and 88.7% for MMO-RuO2IrO2, while COD removal is 47.7% for MMO and 43.1% for BDD anode. Then, short-term biodegradability tests, conducted for EC and PhEC processes, pointed out that MMO-RuO2TiO2 is the most promising anode material, being capable of improving biodegradability in 48.2% and 53% for EC and PhEC degradation, respectively. The toxicity of treated solutions using MMO-RuO2TiO2 and BDD anodes in both EC and PhEC degradation were compared, employing the inhibitory effect in the bioluminescence of marine bacteria Vibrio Fisheri. Toxicity assessments show that toxicity significantly reduces by using the MMO-RuO2TiO2 in NaCl and Na2SO4 medium for both processes. Finally, this study demonstrates that photoelectrolysis with MMO anodes was the most effective strategy in order to increase biodegradability in chloride media, as well as to reduce the toxicity of the treated waste. Electrolysis Photoelectrolysis Clopyralid BDD MMO Gonzaga, Isabelle M.D. verfasserin aut Eguiluz, Katlin I.B. verfasserin aut Salazar-Banda, Giancarlo R. verfasserin aut Saez, Cristina verfasserin (orcid)0000-0001-6652-0496 aut Rodrigo, Manuel A. verfasserin (orcid)0000-0003-2518-8436 aut Enthalten in Journal of electroanalytical chemistry New York, NY [u.a.] : Elsevier, 1959 864 Online-Ressource (DE-627)302466533 (DE-600)1491150-4 (DE-576)098614797 1873-2569 nnns volume:864 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.27 Elektrochemische Analyse AR 864 |
allfieldsSound |
10.1016/j.jelechem.2020.114084 doi (DE-627)ELV003993094 (ELSEVIER)S1572-6657(20)30267-8 DE-627 ger DE-627 rda eng 540 620 DE-600 35.27 bkl Santos, Géssica O.S. verfasserin aut Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal conditions, it was carried out EC and PhEC degradations in chloride medium, at current densities ranging from 30 to 100 mA cm−2 during 1 h (0.8–2.7 A h L−1), using as anodes MMO-RuO2TiO2, MMO-RuO2IrO2, MMO-IrO2Ta2O5 and boron-doped diamond (BDD). Results show better efficiencies on clopyralid removal for MMO-RuO2IrO2 and BDD anodes at lower current densities. Then, the influence of all anodes on clopyralid transformation was evaluated, extending the electrolysis and photoelectrolysis for 8 h applying 30 mA cm−2 (6.4 A h cm−3). At these conditions, better outcomes are observed for PhEC degradation, where complete pollutant removal is attained for BDD anode and 88.7% for MMO-RuO2IrO2, while COD removal is 47.7% for MMO and 43.1% for BDD anode. Then, short-term biodegradability tests, conducted for EC and PhEC processes, pointed out that MMO-RuO2TiO2 is the most promising anode material, being capable of improving biodegradability in 48.2% and 53% for EC and PhEC degradation, respectively. The toxicity of treated solutions using MMO-RuO2TiO2 and BDD anodes in both EC and PhEC degradation were compared, employing the inhibitory effect in the bioluminescence of marine bacteria Vibrio Fisheri. Toxicity assessments show that toxicity significantly reduces by using the MMO-RuO2TiO2 in NaCl and Na2SO4 medium for both processes. Finally, this study demonstrates that photoelectrolysis with MMO anodes was the most effective strategy in order to increase biodegradability in chloride media, as well as to reduce the toxicity of the treated waste. Electrolysis Photoelectrolysis Clopyralid BDD MMO Gonzaga, Isabelle M.D. verfasserin aut Eguiluz, Katlin I.B. verfasserin aut Salazar-Banda, Giancarlo R. verfasserin aut Saez, Cristina verfasserin (orcid)0000-0001-6652-0496 aut Rodrigo, Manuel A. verfasserin (orcid)0000-0003-2518-8436 aut Enthalten in Journal of electroanalytical chemistry New York, NY [u.a.] : Elsevier, 1959 864 Online-Ressource (DE-627)302466533 (DE-600)1491150-4 (DE-576)098614797 1873-2569 nnns volume:864 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.27 Elektrochemische Analyse AR 864 |
language |
English |
source |
Enthalten in Journal of electroanalytical chemistry 864 volume:864 |
sourceStr |
Enthalten in Journal of electroanalytical chemistry 864 volume:864 |
format_phy_str_mv |
Article |
bklname |
Elektrochemische Analyse |
institution |
findex.gbv.de |
topic_facet |
Electrolysis Photoelectrolysis Clopyralid BDD MMO |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Journal of electroanalytical chemistry |
authorswithroles_txt_mv |
Santos, Géssica O.S. @@aut@@ Gonzaga, Isabelle M.D. @@aut@@ Eguiluz, Katlin I.B. @@aut@@ Salazar-Banda, Giancarlo R. @@aut@@ Saez, Cristina @@aut@@ Rodrigo, Manuel A. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
302466533 |
dewey-sort |
3540 |
id |
ELV003993094 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003993094</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jelechem.2020.114084</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003993094</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1572-6657(20)30267-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.27</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Santos, Géssica O.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal conditions, it was carried out EC and PhEC degradations in chloride medium, at current densities ranging from 30 to 100 mA cm−2 during 1 h (0.8–2.7 A h L−1), using as anodes MMO-RuO2TiO2, MMO-RuO2IrO2, MMO-IrO2Ta2O5 and boron-doped diamond (BDD). Results show better efficiencies on clopyralid removal for MMO-RuO2IrO2 and BDD anodes at lower current densities. Then, the influence of all anodes on clopyralid transformation was evaluated, extending the electrolysis and photoelectrolysis for 8 h applying 30 mA cm−2 (6.4 A h cm−3). At these conditions, better outcomes are observed for PhEC degradation, where complete pollutant removal is attained for BDD anode and 88.7% for MMO-RuO2IrO2, while COD removal is 47.7% for MMO and 43.1% for BDD anode. Then, short-term biodegradability tests, conducted for EC and PhEC processes, pointed out that MMO-RuO2TiO2 is the most promising anode material, being capable of improving biodegradability in 48.2% and 53% for EC and PhEC degradation, respectively. The toxicity of treated solutions using MMO-RuO2TiO2 and BDD anodes in both EC and PhEC degradation were compared, employing the inhibitory effect in the bioluminescence of marine bacteria Vibrio Fisheri. Toxicity assessments show that toxicity significantly reduces by using the MMO-RuO2TiO2 in NaCl and Na2SO4 medium for both processes. Finally, this study demonstrates that photoelectrolysis with MMO anodes was the most effective strategy in order to increase biodegradability in chloride media, as well as to reduce the toxicity of the treated waste.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoelectrolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clopyralid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BDD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MMO</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gonzaga, Isabelle M.D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eguiluz, Katlin I.B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salazar-Banda, Giancarlo R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saez, Cristina</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6652-0496</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodrigo, Manuel A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2518-8436</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electroanalytical chemistry</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1959</subfield><subfield code="g">864</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302466533</subfield><subfield code="w">(DE-600)1491150-4</subfield><subfield code="w">(DE-576)098614797</subfield><subfield code="x">1873-2569</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:864</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.27</subfield><subfield code="j">Elektrochemische Analyse</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">864</subfield></datafield></record></collection>
|
author |
Santos, Géssica O.S. |
spellingShingle |
Santos, Géssica O.S. ddc 540 bkl 35.27 misc Electrolysis misc Photoelectrolysis misc Clopyralid misc BDD misc MMO Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material |
authorStr |
Santos, Géssica O.S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302466533 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2569 |
topic_title |
540 620 DE-600 35.27 bkl Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material Electrolysis Photoelectrolysis Clopyralid BDD MMO |
topic |
ddc 540 bkl 35.27 misc Electrolysis misc Photoelectrolysis misc Clopyralid misc BDD misc MMO |
topic_unstemmed |
ddc 540 bkl 35.27 misc Electrolysis misc Photoelectrolysis misc Clopyralid misc BDD misc MMO |
topic_browse |
ddc 540 bkl 35.27 misc Electrolysis misc Photoelectrolysis misc Clopyralid misc BDD misc MMO |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of electroanalytical chemistry |
hierarchy_parent_id |
302466533 |
dewey-tens |
540 - Chemistry 620 - Engineering |
hierarchy_top_title |
Journal of electroanalytical chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302466533 (DE-600)1491150-4 (DE-576)098614797 |
title |
Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material |
ctrlnum |
(DE-627)ELV003993094 (ELSEVIER)S1572-6657(20)30267-8 |
title_full |
Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material |
author_sort |
Santos, Géssica O.S. |
journal |
Journal of electroanalytical chemistry |
journalStr |
Journal of electroanalytical chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Santos, Géssica O.S. Gonzaga, Isabelle M.D. Eguiluz, Katlin I.B. Salazar-Banda, Giancarlo R. Saez, Cristina Rodrigo, Manuel A. |
container_volume |
864 |
class |
540 620 DE-600 35.27 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Santos, Géssica O.S. |
doi_str_mv |
10.1016/j.jelechem.2020.114084 |
normlink |
(ORCID)0000-0001-6652-0496 (ORCID)0000-0003-2518-8436 |
normlink_prefix_str_mv |
(orcid)0000-0001-6652-0496 (orcid)0000-0003-2518-8436 |
dewey-full |
540 620 |
author2-role |
verfasserin |
title_sort |
improving biodegradability of clopyralid wastes by photoelectrolysis: the role of the anode material |
title_auth |
Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material |
abstract |
In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal conditions, it was carried out EC and PhEC degradations in chloride medium, at current densities ranging from 30 to 100 mA cm−2 during 1 h (0.8–2.7 A h L−1), using as anodes MMO-RuO2TiO2, MMO-RuO2IrO2, MMO-IrO2Ta2O5 and boron-doped diamond (BDD). Results show better efficiencies on clopyralid removal for MMO-RuO2IrO2 and BDD anodes at lower current densities. Then, the influence of all anodes on clopyralid transformation was evaluated, extending the electrolysis and photoelectrolysis for 8 h applying 30 mA cm−2 (6.4 A h cm−3). At these conditions, better outcomes are observed for PhEC degradation, where complete pollutant removal is attained for BDD anode and 88.7% for MMO-RuO2IrO2, while COD removal is 47.7% for MMO and 43.1% for BDD anode. Then, short-term biodegradability tests, conducted for EC and PhEC processes, pointed out that MMO-RuO2TiO2 is the most promising anode material, being capable of improving biodegradability in 48.2% and 53% for EC and PhEC degradation, respectively. The toxicity of treated solutions using MMO-RuO2TiO2 and BDD anodes in both EC and PhEC degradation were compared, employing the inhibitory effect in the bioluminescence of marine bacteria Vibrio Fisheri. Toxicity assessments show that toxicity significantly reduces by using the MMO-RuO2TiO2 in NaCl and Na2SO4 medium for both processes. Finally, this study demonstrates that photoelectrolysis with MMO anodes was the most effective strategy in order to increase biodegradability in chloride media, as well as to reduce the toxicity of the treated waste. |
abstractGer |
In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal conditions, it was carried out EC and PhEC degradations in chloride medium, at current densities ranging from 30 to 100 mA cm−2 during 1 h (0.8–2.7 A h L−1), using as anodes MMO-RuO2TiO2, MMO-RuO2IrO2, MMO-IrO2Ta2O5 and boron-doped diamond (BDD). Results show better efficiencies on clopyralid removal for MMO-RuO2IrO2 and BDD anodes at lower current densities. Then, the influence of all anodes on clopyralid transformation was evaluated, extending the electrolysis and photoelectrolysis for 8 h applying 30 mA cm−2 (6.4 A h cm−3). At these conditions, better outcomes are observed for PhEC degradation, where complete pollutant removal is attained for BDD anode and 88.7% for MMO-RuO2IrO2, while COD removal is 47.7% for MMO and 43.1% for BDD anode. Then, short-term biodegradability tests, conducted for EC and PhEC processes, pointed out that MMO-RuO2TiO2 is the most promising anode material, being capable of improving biodegradability in 48.2% and 53% for EC and PhEC degradation, respectively. The toxicity of treated solutions using MMO-RuO2TiO2 and BDD anodes in both EC and PhEC degradation were compared, employing the inhibitory effect in the bioluminescence of marine bacteria Vibrio Fisheri. Toxicity assessments show that toxicity significantly reduces by using the MMO-RuO2TiO2 in NaCl and Na2SO4 medium for both processes. Finally, this study demonstrates that photoelectrolysis with MMO anodes was the most effective strategy in order to increase biodegradability in chloride media, as well as to reduce the toxicity of the treated waste. |
abstract_unstemmed |
In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal conditions, it was carried out EC and PhEC degradations in chloride medium, at current densities ranging from 30 to 100 mA cm−2 during 1 h (0.8–2.7 A h L−1), using as anodes MMO-RuO2TiO2, MMO-RuO2IrO2, MMO-IrO2Ta2O5 and boron-doped diamond (BDD). Results show better efficiencies on clopyralid removal for MMO-RuO2IrO2 and BDD anodes at lower current densities. Then, the influence of all anodes on clopyralid transformation was evaluated, extending the electrolysis and photoelectrolysis for 8 h applying 30 mA cm−2 (6.4 A h cm−3). At these conditions, better outcomes are observed for PhEC degradation, where complete pollutant removal is attained for BDD anode and 88.7% for MMO-RuO2IrO2, while COD removal is 47.7% for MMO and 43.1% for BDD anode. Then, short-term biodegradability tests, conducted for EC and PhEC processes, pointed out that MMO-RuO2TiO2 is the most promising anode material, being capable of improving biodegradability in 48.2% and 53% for EC and PhEC degradation, respectively. The toxicity of treated solutions using MMO-RuO2TiO2 and BDD anodes in both EC and PhEC degradation were compared, employing the inhibitory effect in the bioluminescence of marine bacteria Vibrio Fisheri. Toxicity assessments show that toxicity significantly reduces by using the MMO-RuO2TiO2 in NaCl and Na2SO4 medium for both processes. Finally, this study demonstrates that photoelectrolysis with MMO anodes was the most effective strategy in order to increase biodegradability in chloride media, as well as to reduce the toxicity of the treated waste. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material |
remote_bool |
true |
author2 |
Gonzaga, Isabelle M.D. Eguiluz, Katlin I.B. Salazar-Banda, Giancarlo R. Saez, Cristina Rodrigo, Manuel A. |
author2Str |
Gonzaga, Isabelle M.D. Eguiluz, Katlin I.B. Salazar-Banda, Giancarlo R. Saez, Cristina Rodrigo, Manuel A. |
ppnlink |
302466533 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jelechem.2020.114084 |
up_date |
2024-07-06T21:29:08.088Z |
_version_ |
1803866706374819840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV003993094</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jelechem.2020.114084</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV003993094</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1572-6657(20)30267-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.27</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Santos, Géssica O.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, the removal of the non-readily biodegradable herbicide clopyralid by electrochemical (EC) and photoelectrochemical (PhEC) oxidation with different anode materials were conducted looking to improve not only its oxidation but also its biodegradability. First, in order to find out optimal conditions, it was carried out EC and PhEC degradations in chloride medium, at current densities ranging from 30 to 100 mA cm−2 during 1 h (0.8–2.7 A h L−1), using as anodes MMO-RuO2TiO2, MMO-RuO2IrO2, MMO-IrO2Ta2O5 and boron-doped diamond (BDD). Results show better efficiencies on clopyralid removal for MMO-RuO2IrO2 and BDD anodes at lower current densities. Then, the influence of all anodes on clopyralid transformation was evaluated, extending the electrolysis and photoelectrolysis for 8 h applying 30 mA cm−2 (6.4 A h cm−3). At these conditions, better outcomes are observed for PhEC degradation, where complete pollutant removal is attained for BDD anode and 88.7% for MMO-RuO2IrO2, while COD removal is 47.7% for MMO and 43.1% for BDD anode. Then, short-term biodegradability tests, conducted for EC and PhEC processes, pointed out that MMO-RuO2TiO2 is the most promising anode material, being capable of improving biodegradability in 48.2% and 53% for EC and PhEC degradation, respectively. The toxicity of treated solutions using MMO-RuO2TiO2 and BDD anodes in both EC and PhEC degradation were compared, employing the inhibitory effect in the bioluminescence of marine bacteria Vibrio Fisheri. Toxicity assessments show that toxicity significantly reduces by using the MMO-RuO2TiO2 in NaCl and Na2SO4 medium for both processes. Finally, this study demonstrates that photoelectrolysis with MMO anodes was the most effective strategy in order to increase biodegradability in chloride media, as well as to reduce the toxicity of the treated waste.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoelectrolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clopyralid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BDD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MMO</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gonzaga, Isabelle M.D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eguiluz, Katlin I.B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salazar-Banda, Giancarlo R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saez, Cristina</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6652-0496</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodrigo, Manuel A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2518-8436</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electroanalytical chemistry</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1959</subfield><subfield code="g">864</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302466533</subfield><subfield code="w">(DE-600)1491150-4</subfield><subfield code="w">(DE-576)098614797</subfield><subfield code="x">1873-2569</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:864</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.27</subfield><subfield code="j">Elektrochemische Analyse</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">864</subfield></datafield></record></collection>
|
score |
7.399884 |