A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya
In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from liv...
Ausführliche Beschreibung
Autor*in: |
Goopy, J.P. [verfasserIn] Onyango, A.A. [verfasserIn] Dickhoefer, U. [verfasserIn] Butterbach-Bahl, K. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Agricultural systems - Amsterdam [u.a.] : Elsevier, 1976, 161, Seite 72-80 |
---|---|
Übergeordnetes Werk: |
volume:161 ; pages:72-80 |
DOI / URN: |
10.1016/j.agsy.2017.12.004 |
---|
Katalog-ID: |
ELV004028910 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004028910 | ||
003 | DE-627 | ||
005 | 20230524141000.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.agsy.2017.12.004 |2 doi | |
035 | |a (DE-627)ELV004028910 | ||
035 | |a (ELSEVIER)S0308-521X(17)30526-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |q DE-600 |
084 | |a 49.00 |2 bkl | ||
084 | |a 48.00 |2 bkl | ||
100 | 1 | |a Goopy, J.P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya |
264 | 1 | |c 2017 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH4 production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49kg CH4) and for adolescent and adult female (23.0, 28.3 versus 41kg), but not calves (15.7 versus 16kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted. | ||
650 | 4 | |a Enteric methane | |
650 | 4 | |a Ruminant | |
650 | 4 | |a Cattle | |
650 | 4 | |a GHG inventory | |
650 | 4 | |a East Africa | |
700 | 1 | |a Onyango, A.A. |e verfasserin |4 aut | |
700 | 1 | |a Dickhoefer, U. |e verfasserin |4 aut | |
700 | 1 | |a Butterbach-Bahl, K. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Agricultural systems |d Amsterdam [u.a.] : Elsevier, 1976 |g 161, Seite 72-80 |h Online-Ressource |w (DE-627)306311003 |w (DE-600)1495825-9 |w (DE-576)255637659 |x 0308-521X |7 nnns |
773 | 1 | 8 | |g volume:161 |g pages:72-80 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2098 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 49.00 |j Hauswirtschaft: Allgemeines |
936 | b | k | |a 48.00 |j Land- und Forstwirtschaft: Allgemeines |
951 | |a AR | ||
952 | |d 161 |h 72-80 |
author_variant |
j g jg a o ao u d ud k b b kbb |
---|---|
matchkey_str |
article:0308521X:2017----::nwprahoipoigmsinatrfrneimtaemsinoctlisalodrytmoes |
hierarchy_sort_str |
2017 |
bklnumber |
49.00 48.00 |
publishDate |
2017 |
allfields |
10.1016/j.agsy.2017.12.004 doi (DE-627)ELV004028910 (ELSEVIER)S0308-521X(17)30526-7 DE-627 ger DE-627 rda eng 630 640 DE-600 49.00 bkl 48.00 bkl Goopy, J.P. verfasserin aut A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH4 production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49kg CH4) and for adolescent and adult female (23.0, 28.3 versus 41kg), but not calves (15.7 versus 16kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted. Enteric methane Ruminant Cattle GHG inventory East Africa Onyango, A.A. verfasserin aut Dickhoefer, U. verfasserin aut Butterbach-Bahl, K. verfasserin aut Enthalten in Agricultural systems Amsterdam [u.a.] : Elsevier, 1976 161, Seite 72-80 Online-Ressource (DE-627)306311003 (DE-600)1495825-9 (DE-576)255637659 0308-521X nnns volume:161 pages:72-80 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 49.00 Hauswirtschaft: Allgemeines 48.00 Land- und Forstwirtschaft: Allgemeines AR 161 72-80 |
spelling |
10.1016/j.agsy.2017.12.004 doi (DE-627)ELV004028910 (ELSEVIER)S0308-521X(17)30526-7 DE-627 ger DE-627 rda eng 630 640 DE-600 49.00 bkl 48.00 bkl Goopy, J.P. verfasserin aut A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH4 production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49kg CH4) and for adolescent and adult female (23.0, 28.3 versus 41kg), but not calves (15.7 versus 16kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted. Enteric methane Ruminant Cattle GHG inventory East Africa Onyango, A.A. verfasserin aut Dickhoefer, U. verfasserin aut Butterbach-Bahl, K. verfasserin aut Enthalten in Agricultural systems Amsterdam [u.a.] : Elsevier, 1976 161, Seite 72-80 Online-Ressource (DE-627)306311003 (DE-600)1495825-9 (DE-576)255637659 0308-521X nnns volume:161 pages:72-80 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 49.00 Hauswirtschaft: Allgemeines 48.00 Land- und Forstwirtschaft: Allgemeines AR 161 72-80 |
allfields_unstemmed |
10.1016/j.agsy.2017.12.004 doi (DE-627)ELV004028910 (ELSEVIER)S0308-521X(17)30526-7 DE-627 ger DE-627 rda eng 630 640 DE-600 49.00 bkl 48.00 bkl Goopy, J.P. verfasserin aut A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH4 production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49kg CH4) and for adolescent and adult female (23.0, 28.3 versus 41kg), but not calves (15.7 versus 16kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted. Enteric methane Ruminant Cattle GHG inventory East Africa Onyango, A.A. verfasserin aut Dickhoefer, U. verfasserin aut Butterbach-Bahl, K. verfasserin aut Enthalten in Agricultural systems Amsterdam [u.a.] : Elsevier, 1976 161, Seite 72-80 Online-Ressource (DE-627)306311003 (DE-600)1495825-9 (DE-576)255637659 0308-521X nnns volume:161 pages:72-80 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 49.00 Hauswirtschaft: Allgemeines 48.00 Land- und Forstwirtschaft: Allgemeines AR 161 72-80 |
allfieldsGer |
10.1016/j.agsy.2017.12.004 doi (DE-627)ELV004028910 (ELSEVIER)S0308-521X(17)30526-7 DE-627 ger DE-627 rda eng 630 640 DE-600 49.00 bkl 48.00 bkl Goopy, J.P. verfasserin aut A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH4 production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49kg CH4) and for adolescent and adult female (23.0, 28.3 versus 41kg), but not calves (15.7 versus 16kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted. Enteric methane Ruminant Cattle GHG inventory East Africa Onyango, A.A. verfasserin aut Dickhoefer, U. verfasserin aut Butterbach-Bahl, K. verfasserin aut Enthalten in Agricultural systems Amsterdam [u.a.] : Elsevier, 1976 161, Seite 72-80 Online-Ressource (DE-627)306311003 (DE-600)1495825-9 (DE-576)255637659 0308-521X nnns volume:161 pages:72-80 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 49.00 Hauswirtschaft: Allgemeines 48.00 Land- und Forstwirtschaft: Allgemeines AR 161 72-80 |
allfieldsSound |
10.1016/j.agsy.2017.12.004 doi (DE-627)ELV004028910 (ELSEVIER)S0308-521X(17)30526-7 DE-627 ger DE-627 rda eng 630 640 DE-600 49.00 bkl 48.00 bkl Goopy, J.P. verfasserin aut A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya 2017 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH4 production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49kg CH4) and for adolescent and adult female (23.0, 28.3 versus 41kg), but not calves (15.7 versus 16kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted. Enteric methane Ruminant Cattle GHG inventory East Africa Onyango, A.A. verfasserin aut Dickhoefer, U. verfasserin aut Butterbach-Bahl, K. verfasserin aut Enthalten in Agricultural systems Amsterdam [u.a.] : Elsevier, 1976 161, Seite 72-80 Online-Ressource (DE-627)306311003 (DE-600)1495825-9 (DE-576)255637659 0308-521X nnns volume:161 pages:72-80 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 49.00 Hauswirtschaft: Allgemeines 48.00 Land- und Forstwirtschaft: Allgemeines AR 161 72-80 |
language |
English |
source |
Enthalten in Agricultural systems 161, Seite 72-80 volume:161 pages:72-80 |
sourceStr |
Enthalten in Agricultural systems 161, Seite 72-80 volume:161 pages:72-80 |
format_phy_str_mv |
Article |
bklname |
Hauswirtschaft: Allgemeines Land- und Forstwirtschaft: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Enteric methane Ruminant Cattle GHG inventory East Africa |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Agricultural systems |
authorswithroles_txt_mv |
Goopy, J.P. @@aut@@ Onyango, A.A. @@aut@@ Dickhoefer, U. @@aut@@ Butterbach-Bahl, K. @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
306311003 |
dewey-sort |
3630 |
id |
ELV004028910 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004028910</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524141000.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.agsy.2017.12.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004028910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0308-521X(17)30526-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goopy, J.P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH4 production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49kg CH4) and for adolescent and adult female (23.0, 28.3 versus 41kg), but not calves (15.7 versus 16kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enteric methane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ruminant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cattle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GHG inventory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">East Africa</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Onyango, A.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dickhoefer, U.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Butterbach-Bahl, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Agricultural systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1976</subfield><subfield code="g">161, Seite 72-80</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306311003</subfield><subfield code="w">(DE-600)1495825-9</subfield><subfield code="w">(DE-576)255637659</subfield><subfield code="x">0308-521X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:161</subfield><subfield code="g">pages:72-80</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2098</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">49.00</subfield><subfield code="j">Hauswirtschaft: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="j">Land- und Forstwirtschaft: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">161</subfield><subfield code="h">72-80</subfield></datafield></record></collection>
|
author |
Goopy, J.P. |
spellingShingle |
Goopy, J.P. ddc 630 bkl 49.00 bkl 48.00 misc Enteric methane misc Ruminant misc Cattle misc GHG inventory misc East Africa A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya |
authorStr |
Goopy, J.P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306311003 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0308-521X |
topic_title |
630 640 DE-600 49.00 bkl 48.00 bkl A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya Enteric methane Ruminant Cattle GHG inventory East Africa |
topic |
ddc 630 bkl 49.00 bkl 48.00 misc Enteric methane misc Ruminant misc Cattle misc GHG inventory misc East Africa |
topic_unstemmed |
ddc 630 bkl 49.00 bkl 48.00 misc Enteric methane misc Ruminant misc Cattle misc GHG inventory misc East Africa |
topic_browse |
ddc 630 bkl 49.00 bkl 48.00 misc Enteric methane misc Ruminant misc Cattle misc GHG inventory misc East Africa |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agricultural systems |
hierarchy_parent_id |
306311003 |
dewey-tens |
630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Agricultural systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306311003 (DE-600)1495825-9 (DE-576)255637659 |
title |
A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya |
ctrlnum |
(DE-627)ELV004028910 (ELSEVIER)S0308-521X(17)30526-7 |
title_full |
A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya |
author_sort |
Goopy, J.P. |
journal |
Agricultural systems |
journalStr |
Agricultural systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
zzz |
container_start_page |
72 |
author_browse |
Goopy, J.P. Onyango, A.A. Dickhoefer, U. Butterbach-Bahl, K. |
container_volume |
161 |
class |
630 640 DE-600 49.00 bkl 48.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Goopy, J.P. |
doi_str_mv |
10.1016/j.agsy.2017.12.004 |
dewey-full |
630 640 |
author2-role |
verfasserin |
title_sort |
a new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of east africa – results for nyando, western kenya |
title_auth |
A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya |
abstract |
In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH4 production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49kg CH4) and for adolescent and adult female (23.0, 28.3 versus 41kg), but not calves (15.7 versus 16kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted. |
abstractGer |
In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH4 production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49kg CH4) and for adolescent and adult female (23.0, 28.3 versus 41kg), but not calves (15.7 versus 16kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted. |
abstract_unstemmed |
In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH4 production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49kg CH4) and for adolescent and adult female (23.0, 28.3 versus 41kg), but not calves (15.7 versus 16kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2098 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya |
remote_bool |
true |
author2 |
Onyango, A.A. Dickhoefer, U. Butterbach-Bahl, K. |
author2Str |
Onyango, A.A. Dickhoefer, U. Butterbach-Bahl, K. |
ppnlink |
306311003 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.agsy.2017.12.004 |
up_date |
2024-07-06T21:36:29.840Z |
_version_ |
1803867169585364992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004028910</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524141000.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.agsy.2017.12.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004028910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0308-521X(17)30526-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goopy, J.P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and >70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH4 production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49kg CH4) and for adolescent and adult female (23.0, 28.3 versus 41kg), but not calves (15.7 versus 16kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enteric methane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ruminant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cattle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GHG inventory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">East Africa</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Onyango, A.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dickhoefer, U.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Butterbach-Bahl, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Agricultural systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1976</subfield><subfield code="g">161, Seite 72-80</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306311003</subfield><subfield code="w">(DE-600)1495825-9</subfield><subfield code="w">(DE-576)255637659</subfield><subfield code="x">0308-521X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:161</subfield><subfield code="g">pages:72-80</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2098</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">49.00</subfield><subfield code="j">Hauswirtschaft: Allgemeines</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="j">Land- und Forstwirtschaft: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">161</subfield><subfield code="h">72-80</subfield></datafield></record></collection>
|
score |
7.403097 |