Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease?
In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the sim...
Ausführliche Beschreibung
Autor*in: |
Ehsani, Hossein [verfasserIn] Parvaneh, Saman [verfasserIn] Mohler, Jane [verfasserIn] Wendel, Christopher [verfasserIn] Zamrini, Edward [verfasserIn] O'Connor, Kathy [verfasserIn] Toosizadeh, Nima [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers in biology and medicine - Amsterdam [u.a.] : Elsevier Science, 1970, 120 |
---|---|
Übergeordnetes Werk: |
volume:120 |
DOI / URN: |
10.1016/j.compbiomed.2020.103705 |
---|
Katalog-ID: |
ELV004075498 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004075498 | ||
003 | DE-627 | ||
005 | 20230524154308.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compbiomed.2020.103705 |2 doi | |
035 | |a (DE-627)ELV004075498 | ||
035 | |a (ELSEVIER)S0010-4825(20)30092-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 570 |q DE-600 |
084 | |a 42.00 |2 bkl | ||
084 | |a 44.09 |2 bkl | ||
100 | 1 | |a Ehsani, Hossein |e verfasserin |4 aut | |
245 | 1 | 0 | |a Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the simultaneous execution of a motor and a cognitive task (dual-tasking). Older adults aged 65 years and older were recruited and stratified into 1) cognitive normal (CN), 2) amnestic MCI of the Alzheimer's type (aMCI), and 3) early-stage Alzheimer's Disease (AD). Participants performed normal-paced repetitive elbow flexion without counting and while counting backward by ones and threes. The influence of cognitive task on motor function was measured using uncertainty (measured by Shannon entropy), and local instability (measured by the largest Lyapunov exponent) of elbow flexion and compared between cognitive groups using ANOVAs, while adjusting for age, sex, and BMI. We developed logistic ordinal regression models for predicting cognitive groups based on these nonlinear measures. A total of 81 participants were recruited, including 35 CN (age = 83.8 ± 6.9), 30 aMCI (age = 83.9 ± 6.9), and 16 early AD (age = 83.2 ± 6.6). Uncertainty of motor function demonstrated the strongest associations with cognitive impairment, with an effect size of 0.52, 0.88, and 0.51 for CN vs. aMCI, CN vs. AD, and aMCI vs. AD comparisons, respectively. Ordinal logistic models predicted cognitive impairment (aMCI and AD combined) with a sensitivity and specificity of 0.82. The findings accentuate the potential of employing nonlinear dynamical features of motor functions during dual-tasking, especially uncertainty, in detecting cognitive impairment. | ||
650 | 4 | |a Wearable motion sensors | |
650 | 4 | |a Largest Lyapunov exponent | |
650 | 4 | |a Shannon entropy | |
650 | 4 | |a MCI | |
650 | 4 | |a Early detection | |
650 | 4 | |a Executive function | |
650 | 4 | |a Motor control | |
650 | 4 | |a Computer modeling | |
650 | 4 | |a Nonlinear dynamical systems | |
650 | 4 | |a Biomechanics | |
700 | 1 | |a Parvaneh, Saman |e verfasserin |4 aut | |
700 | 1 | |a Mohler, Jane |e verfasserin |4 aut | |
700 | 1 | |a Wendel, Christopher |e verfasserin |4 aut | |
700 | 1 | |a Zamrini, Edward |e verfasserin |4 aut | |
700 | 1 | |a O'Connor, Kathy |e verfasserin |4 aut | |
700 | 1 | |a Toosizadeh, Nima |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers in biology and medicine |d Amsterdam [u.a.] : Elsevier Science, 1970 |g 120 |h Online-Ressource |w (DE-627)306356783 |w (DE-600)1496984-1 |w (DE-576)081952988 |x 1879-0534 |7 nnns |
773 | 1 | 8 | |g volume:120 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 42.00 |
936 | b | k | |a 44.09 |j Medizintechnik |
951 | |a AR | ||
952 | |d 120 |
author_variant |
h e he s p sp j m jm c w cw e z ez k o ko n t nt |
---|---|
matchkey_str |
article:18790534:2020----::amtrucinnetitadoaisaiiyihnpeeteiyulaknpeitmetcidontvip |
hierarchy_sort_str |
2020 |
bklnumber |
42.00 44.09 |
publishDate |
2020 |
allfields |
10.1016/j.compbiomed.2020.103705 doi (DE-627)ELV004075498 (ELSEVIER)S0010-4825(20)30092-5 DE-627 ger DE-627 rda eng 610 570 DE-600 42.00 bkl 44.09 bkl Ehsani, Hossein verfasserin aut Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the simultaneous execution of a motor and a cognitive task (dual-tasking). Older adults aged 65 years and older were recruited and stratified into 1) cognitive normal (CN), 2) amnestic MCI of the Alzheimer's type (aMCI), and 3) early-stage Alzheimer's Disease (AD). Participants performed normal-paced repetitive elbow flexion without counting and while counting backward by ones and threes. The influence of cognitive task on motor function was measured using uncertainty (measured by Shannon entropy), and local instability (measured by the largest Lyapunov exponent) of elbow flexion and compared between cognitive groups using ANOVAs, while adjusting for age, sex, and BMI. We developed logistic ordinal regression models for predicting cognitive groups based on these nonlinear measures. A total of 81 participants were recruited, including 35 CN (age = 83.8 ± 6.9), 30 aMCI (age = 83.9 ± 6.9), and 16 early AD (age = 83.2 ± 6.6). Uncertainty of motor function demonstrated the strongest associations with cognitive impairment, with an effect size of 0.52, 0.88, and 0.51 for CN vs. aMCI, CN vs. AD, and aMCI vs. AD comparisons, respectively. Ordinal logistic models predicted cognitive impairment (aMCI and AD combined) with a sensitivity and specificity of 0.82. The findings accentuate the potential of employing nonlinear dynamical features of motor functions during dual-tasking, especially uncertainty, in detecting cognitive impairment. Wearable motion sensors Largest Lyapunov exponent Shannon entropy MCI Early detection Executive function Motor control Computer modeling Nonlinear dynamical systems Biomechanics Parvaneh, Saman verfasserin aut Mohler, Jane verfasserin aut Wendel, Christopher verfasserin aut Zamrini, Edward verfasserin aut O'Connor, Kathy verfasserin aut Toosizadeh, Nima verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 120 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:120 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 44.09 Medizintechnik AR 120 |
spelling |
10.1016/j.compbiomed.2020.103705 doi (DE-627)ELV004075498 (ELSEVIER)S0010-4825(20)30092-5 DE-627 ger DE-627 rda eng 610 570 DE-600 42.00 bkl 44.09 bkl Ehsani, Hossein verfasserin aut Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the simultaneous execution of a motor and a cognitive task (dual-tasking). Older adults aged 65 years and older were recruited and stratified into 1) cognitive normal (CN), 2) amnestic MCI of the Alzheimer's type (aMCI), and 3) early-stage Alzheimer's Disease (AD). Participants performed normal-paced repetitive elbow flexion without counting and while counting backward by ones and threes. The influence of cognitive task on motor function was measured using uncertainty (measured by Shannon entropy), and local instability (measured by the largest Lyapunov exponent) of elbow flexion and compared between cognitive groups using ANOVAs, while adjusting for age, sex, and BMI. We developed logistic ordinal regression models for predicting cognitive groups based on these nonlinear measures. A total of 81 participants were recruited, including 35 CN (age = 83.8 ± 6.9), 30 aMCI (age = 83.9 ± 6.9), and 16 early AD (age = 83.2 ± 6.6). Uncertainty of motor function demonstrated the strongest associations with cognitive impairment, with an effect size of 0.52, 0.88, and 0.51 for CN vs. aMCI, CN vs. AD, and aMCI vs. AD comparisons, respectively. Ordinal logistic models predicted cognitive impairment (aMCI and AD combined) with a sensitivity and specificity of 0.82. The findings accentuate the potential of employing nonlinear dynamical features of motor functions during dual-tasking, especially uncertainty, in detecting cognitive impairment. Wearable motion sensors Largest Lyapunov exponent Shannon entropy MCI Early detection Executive function Motor control Computer modeling Nonlinear dynamical systems Biomechanics Parvaneh, Saman verfasserin aut Mohler, Jane verfasserin aut Wendel, Christopher verfasserin aut Zamrini, Edward verfasserin aut O'Connor, Kathy verfasserin aut Toosizadeh, Nima verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 120 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:120 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 44.09 Medizintechnik AR 120 |
allfields_unstemmed |
10.1016/j.compbiomed.2020.103705 doi (DE-627)ELV004075498 (ELSEVIER)S0010-4825(20)30092-5 DE-627 ger DE-627 rda eng 610 570 DE-600 42.00 bkl 44.09 bkl Ehsani, Hossein verfasserin aut Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the simultaneous execution of a motor and a cognitive task (dual-tasking). Older adults aged 65 years and older were recruited and stratified into 1) cognitive normal (CN), 2) amnestic MCI of the Alzheimer's type (aMCI), and 3) early-stage Alzheimer's Disease (AD). Participants performed normal-paced repetitive elbow flexion without counting and while counting backward by ones and threes. The influence of cognitive task on motor function was measured using uncertainty (measured by Shannon entropy), and local instability (measured by the largest Lyapunov exponent) of elbow flexion and compared between cognitive groups using ANOVAs, while adjusting for age, sex, and BMI. We developed logistic ordinal regression models for predicting cognitive groups based on these nonlinear measures. A total of 81 participants were recruited, including 35 CN (age = 83.8 ± 6.9), 30 aMCI (age = 83.9 ± 6.9), and 16 early AD (age = 83.2 ± 6.6). Uncertainty of motor function demonstrated the strongest associations with cognitive impairment, with an effect size of 0.52, 0.88, and 0.51 for CN vs. aMCI, CN vs. AD, and aMCI vs. AD comparisons, respectively. Ordinal logistic models predicted cognitive impairment (aMCI and AD combined) with a sensitivity and specificity of 0.82. The findings accentuate the potential of employing nonlinear dynamical features of motor functions during dual-tasking, especially uncertainty, in detecting cognitive impairment. Wearable motion sensors Largest Lyapunov exponent Shannon entropy MCI Early detection Executive function Motor control Computer modeling Nonlinear dynamical systems Biomechanics Parvaneh, Saman verfasserin aut Mohler, Jane verfasserin aut Wendel, Christopher verfasserin aut Zamrini, Edward verfasserin aut O'Connor, Kathy verfasserin aut Toosizadeh, Nima verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 120 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:120 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 44.09 Medizintechnik AR 120 |
allfieldsGer |
10.1016/j.compbiomed.2020.103705 doi (DE-627)ELV004075498 (ELSEVIER)S0010-4825(20)30092-5 DE-627 ger DE-627 rda eng 610 570 DE-600 42.00 bkl 44.09 bkl Ehsani, Hossein verfasserin aut Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the simultaneous execution of a motor and a cognitive task (dual-tasking). Older adults aged 65 years and older were recruited and stratified into 1) cognitive normal (CN), 2) amnestic MCI of the Alzheimer's type (aMCI), and 3) early-stage Alzheimer's Disease (AD). Participants performed normal-paced repetitive elbow flexion without counting and while counting backward by ones and threes. The influence of cognitive task on motor function was measured using uncertainty (measured by Shannon entropy), and local instability (measured by the largest Lyapunov exponent) of elbow flexion and compared between cognitive groups using ANOVAs, while adjusting for age, sex, and BMI. We developed logistic ordinal regression models for predicting cognitive groups based on these nonlinear measures. A total of 81 participants were recruited, including 35 CN (age = 83.8 ± 6.9), 30 aMCI (age = 83.9 ± 6.9), and 16 early AD (age = 83.2 ± 6.6). Uncertainty of motor function demonstrated the strongest associations with cognitive impairment, with an effect size of 0.52, 0.88, and 0.51 for CN vs. aMCI, CN vs. AD, and aMCI vs. AD comparisons, respectively. Ordinal logistic models predicted cognitive impairment (aMCI and AD combined) with a sensitivity and specificity of 0.82. The findings accentuate the potential of employing nonlinear dynamical features of motor functions during dual-tasking, especially uncertainty, in detecting cognitive impairment. Wearable motion sensors Largest Lyapunov exponent Shannon entropy MCI Early detection Executive function Motor control Computer modeling Nonlinear dynamical systems Biomechanics Parvaneh, Saman verfasserin aut Mohler, Jane verfasserin aut Wendel, Christopher verfasserin aut Zamrini, Edward verfasserin aut O'Connor, Kathy verfasserin aut Toosizadeh, Nima verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 120 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:120 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 44.09 Medizintechnik AR 120 |
allfieldsSound |
10.1016/j.compbiomed.2020.103705 doi (DE-627)ELV004075498 (ELSEVIER)S0010-4825(20)30092-5 DE-627 ger DE-627 rda eng 610 570 DE-600 42.00 bkl 44.09 bkl Ehsani, Hossein verfasserin aut Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the simultaneous execution of a motor and a cognitive task (dual-tasking). Older adults aged 65 years and older were recruited and stratified into 1) cognitive normal (CN), 2) amnestic MCI of the Alzheimer's type (aMCI), and 3) early-stage Alzheimer's Disease (AD). Participants performed normal-paced repetitive elbow flexion without counting and while counting backward by ones and threes. The influence of cognitive task on motor function was measured using uncertainty (measured by Shannon entropy), and local instability (measured by the largest Lyapunov exponent) of elbow flexion and compared between cognitive groups using ANOVAs, while adjusting for age, sex, and BMI. We developed logistic ordinal regression models for predicting cognitive groups based on these nonlinear measures. A total of 81 participants were recruited, including 35 CN (age = 83.8 ± 6.9), 30 aMCI (age = 83.9 ± 6.9), and 16 early AD (age = 83.2 ± 6.6). Uncertainty of motor function demonstrated the strongest associations with cognitive impairment, with an effect size of 0.52, 0.88, and 0.51 for CN vs. aMCI, CN vs. AD, and aMCI vs. AD comparisons, respectively. Ordinal logistic models predicted cognitive impairment (aMCI and AD combined) with a sensitivity and specificity of 0.82. The findings accentuate the potential of employing nonlinear dynamical features of motor functions during dual-tasking, especially uncertainty, in detecting cognitive impairment. Wearable motion sensors Largest Lyapunov exponent Shannon entropy MCI Early detection Executive function Motor control Computer modeling Nonlinear dynamical systems Biomechanics Parvaneh, Saman verfasserin aut Mohler, Jane verfasserin aut Wendel, Christopher verfasserin aut Zamrini, Edward verfasserin aut O'Connor, Kathy verfasserin aut Toosizadeh, Nima verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 120 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:120 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 44.09 Medizintechnik AR 120 |
language |
English |
source |
Enthalten in Computers in biology and medicine 120 volume:120 |
sourceStr |
Enthalten in Computers in biology and medicine 120 volume:120 |
format_phy_str_mv |
Article |
bklname |
Medizintechnik |
institution |
findex.gbv.de |
topic_facet |
Wearable motion sensors Largest Lyapunov exponent Shannon entropy MCI Early detection Executive function Motor control Computer modeling Nonlinear dynamical systems Biomechanics |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Computers in biology and medicine |
authorswithroles_txt_mv |
Ehsani, Hossein @@aut@@ Parvaneh, Saman @@aut@@ Mohler, Jane @@aut@@ Wendel, Christopher @@aut@@ Zamrini, Edward @@aut@@ O'Connor, Kathy @@aut@@ Toosizadeh, Nima @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306356783 |
dewey-sort |
3610 |
id |
ELV004075498 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004075498</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154308.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2020.103705</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004075498</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(20)30092-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ehsani, Hossein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the simultaneous execution of a motor and a cognitive task (dual-tasking). Older adults aged 65 years and older were recruited and stratified into 1) cognitive normal (CN), 2) amnestic MCI of the Alzheimer's type (aMCI), and 3) early-stage Alzheimer's Disease (AD). Participants performed normal-paced repetitive elbow flexion without counting and while counting backward by ones and threes. The influence of cognitive task on motor function was measured using uncertainty (measured by Shannon entropy), and local instability (measured by the largest Lyapunov exponent) of elbow flexion and compared between cognitive groups using ANOVAs, while adjusting for age, sex, and BMI. We developed logistic ordinal regression models for predicting cognitive groups based on these nonlinear measures. A total of 81 participants were recruited, including 35 CN (age = 83.8 ± 6.9), 30 aMCI (age = 83.9 ± 6.9), and 16 early AD (age = 83.2 ± 6.6). Uncertainty of motor function demonstrated the strongest associations with cognitive impairment, with an effect size of 0.52, 0.88, and 0.51 for CN vs. aMCI, CN vs. AD, and aMCI vs. AD comparisons, respectively. Ordinal logistic models predicted cognitive impairment (aMCI and AD combined) with a sensitivity and specificity of 0.82. The findings accentuate the potential of employing nonlinear dynamical features of motor functions during dual-tasking, especially uncertainty, in detecting cognitive impairment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wearable motion sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Largest Lyapunov exponent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shannon entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MCI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Early detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Executive function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motor control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomechanics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parvaneh, Saman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohler, Jane</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wendel, Christopher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zamrini, Edward</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Connor, Kathy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toosizadeh, Nima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">120</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306356783</subfield><subfield code="w">(DE-600)1496984-1</subfield><subfield code="w">(DE-576)081952988</subfield><subfield code="x">1879-0534</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield></datafield></record></collection>
|
author |
Ehsani, Hossein |
spellingShingle |
Ehsani, Hossein ddc 610 bkl 42.00 bkl 44.09 misc Wearable motion sensors misc Largest Lyapunov exponent misc Shannon entropy misc MCI misc Early detection misc Executive function misc Motor control misc Computer modeling misc Nonlinear dynamical systems misc Biomechanics Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? |
authorStr |
Ehsani, Hossein |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306356783 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0534 |
topic_title |
610 570 DE-600 42.00 bkl 44.09 bkl Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? Wearable motion sensors Largest Lyapunov exponent Shannon entropy MCI Early detection Executive function Motor control Computer modeling Nonlinear dynamical systems Biomechanics |
topic |
ddc 610 bkl 42.00 bkl 44.09 misc Wearable motion sensors misc Largest Lyapunov exponent misc Shannon entropy misc MCI misc Early detection misc Executive function misc Motor control misc Computer modeling misc Nonlinear dynamical systems misc Biomechanics |
topic_unstemmed |
ddc 610 bkl 42.00 bkl 44.09 misc Wearable motion sensors misc Largest Lyapunov exponent misc Shannon entropy misc MCI misc Early detection misc Executive function misc Motor control misc Computer modeling misc Nonlinear dynamical systems misc Biomechanics |
topic_browse |
ddc 610 bkl 42.00 bkl 44.09 misc Wearable motion sensors misc Largest Lyapunov exponent misc Shannon entropy misc MCI misc Early detection misc Executive function misc Motor control misc Computer modeling misc Nonlinear dynamical systems misc Biomechanics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers in biology and medicine |
hierarchy_parent_id |
306356783 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Computers in biology and medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 |
title |
Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? |
ctrlnum |
(DE-627)ELV004075498 (ELSEVIER)S0010-4825(20)30092-5 |
title_full |
Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? |
author_sort |
Ehsani, Hossein |
journal |
Computers in biology and medicine |
journalStr |
Computers in biology and medicine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Ehsani, Hossein Parvaneh, Saman Mohler, Jane Wendel, Christopher Zamrini, Edward O'Connor, Kathy Toosizadeh, Nima |
container_volume |
120 |
class |
610 570 DE-600 42.00 bkl 44.09 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ehsani, Hossein |
doi_str_mv |
10.1016/j.compbiomed.2020.103705 |
dewey-full |
610 570 |
author2-role |
verfasserin |
title_sort |
can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage alzheimer's disease? |
title_auth |
Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? |
abstract |
In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the simultaneous execution of a motor and a cognitive task (dual-tasking). Older adults aged 65 years and older were recruited and stratified into 1) cognitive normal (CN), 2) amnestic MCI of the Alzheimer's type (aMCI), and 3) early-stage Alzheimer's Disease (AD). Participants performed normal-paced repetitive elbow flexion without counting and while counting backward by ones and threes. The influence of cognitive task on motor function was measured using uncertainty (measured by Shannon entropy), and local instability (measured by the largest Lyapunov exponent) of elbow flexion and compared between cognitive groups using ANOVAs, while adjusting for age, sex, and BMI. We developed logistic ordinal regression models for predicting cognitive groups based on these nonlinear measures. A total of 81 participants were recruited, including 35 CN (age = 83.8 ± 6.9), 30 aMCI (age = 83.9 ± 6.9), and 16 early AD (age = 83.2 ± 6.6). Uncertainty of motor function demonstrated the strongest associations with cognitive impairment, with an effect size of 0.52, 0.88, and 0.51 for CN vs. aMCI, CN vs. AD, and aMCI vs. AD comparisons, respectively. Ordinal logistic models predicted cognitive impairment (aMCI and AD combined) with a sensitivity and specificity of 0.82. The findings accentuate the potential of employing nonlinear dynamical features of motor functions during dual-tasking, especially uncertainty, in detecting cognitive impairment. |
abstractGer |
In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the simultaneous execution of a motor and a cognitive task (dual-tasking). Older adults aged 65 years and older were recruited and stratified into 1) cognitive normal (CN), 2) amnestic MCI of the Alzheimer's type (aMCI), and 3) early-stage Alzheimer's Disease (AD). Participants performed normal-paced repetitive elbow flexion without counting and while counting backward by ones and threes. The influence of cognitive task on motor function was measured using uncertainty (measured by Shannon entropy), and local instability (measured by the largest Lyapunov exponent) of elbow flexion and compared between cognitive groups using ANOVAs, while adjusting for age, sex, and BMI. We developed logistic ordinal regression models for predicting cognitive groups based on these nonlinear measures. A total of 81 participants were recruited, including 35 CN (age = 83.8 ± 6.9), 30 aMCI (age = 83.9 ± 6.9), and 16 early AD (age = 83.2 ± 6.6). Uncertainty of motor function demonstrated the strongest associations with cognitive impairment, with an effect size of 0.52, 0.88, and 0.51 for CN vs. aMCI, CN vs. AD, and aMCI vs. AD comparisons, respectively. Ordinal logistic models predicted cognitive impairment (aMCI and AD combined) with a sensitivity and specificity of 0.82. The findings accentuate the potential of employing nonlinear dynamical features of motor functions during dual-tasking, especially uncertainty, in detecting cognitive impairment. |
abstract_unstemmed |
In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the simultaneous execution of a motor and a cognitive task (dual-tasking). Older adults aged 65 years and older were recruited and stratified into 1) cognitive normal (CN), 2) amnestic MCI of the Alzheimer's type (aMCI), and 3) early-stage Alzheimer's Disease (AD). Participants performed normal-paced repetitive elbow flexion without counting and while counting backward by ones and threes. The influence of cognitive task on motor function was measured using uncertainty (measured by Shannon entropy), and local instability (measured by the largest Lyapunov exponent) of elbow flexion and compared between cognitive groups using ANOVAs, while adjusting for age, sex, and BMI. We developed logistic ordinal regression models for predicting cognitive groups based on these nonlinear measures. A total of 81 participants were recruited, including 35 CN (age = 83.8 ± 6.9), 30 aMCI (age = 83.9 ± 6.9), and 16 early AD (age = 83.2 ± 6.6). Uncertainty of motor function demonstrated the strongest associations with cognitive impairment, with an effect size of 0.52, 0.88, and 0.51 for CN vs. aMCI, CN vs. AD, and aMCI vs. AD comparisons, respectively. Ordinal logistic models predicted cognitive impairment (aMCI and AD combined) with a sensitivity and specificity of 0.82. The findings accentuate the potential of employing nonlinear dynamical features of motor functions during dual-tasking, especially uncertainty, in detecting cognitive impairment. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease? |
remote_bool |
true |
author2 |
Parvaneh, Saman Mohler, Jane Wendel, Christopher Zamrini, Edward O'Connor, Kathy Toosizadeh, Nima |
author2Str |
Parvaneh, Saman Mohler, Jane Wendel, Christopher Zamrini, Edward O'Connor, Kathy Toosizadeh, Nima |
ppnlink |
306356783 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compbiomed.2020.103705 |
up_date |
2024-07-06T21:45:54.005Z |
_version_ |
1803867761155244032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004075498</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154308.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2020.103705</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004075498</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(20)30092-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ehsani, Hossein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Can motor function uncertainty and local instability within upper-extremity dual-tasking predict amnestic mild cognitive impairment and early-stage Alzheimer's disease?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, we examined the uncertainty and local instability of motor function for cognitive impairment screening using a previously validated upper-extremity function (UEF). This approach was established based upon the fact that elders with an impaired executive function have trouble in the simultaneous execution of a motor and a cognitive task (dual-tasking). Older adults aged 65 years and older were recruited and stratified into 1) cognitive normal (CN), 2) amnestic MCI of the Alzheimer's type (aMCI), and 3) early-stage Alzheimer's Disease (AD). Participants performed normal-paced repetitive elbow flexion without counting and while counting backward by ones and threes. The influence of cognitive task on motor function was measured using uncertainty (measured by Shannon entropy), and local instability (measured by the largest Lyapunov exponent) of elbow flexion and compared between cognitive groups using ANOVAs, while adjusting for age, sex, and BMI. We developed logistic ordinal regression models for predicting cognitive groups based on these nonlinear measures. A total of 81 participants were recruited, including 35 CN (age = 83.8 ± 6.9), 30 aMCI (age = 83.9 ± 6.9), and 16 early AD (age = 83.2 ± 6.6). Uncertainty of motor function demonstrated the strongest associations with cognitive impairment, with an effect size of 0.52, 0.88, and 0.51 for CN vs. aMCI, CN vs. AD, and aMCI vs. AD comparisons, respectively. Ordinal logistic models predicted cognitive impairment (aMCI and AD combined) with a sensitivity and specificity of 0.82. The findings accentuate the potential of employing nonlinear dynamical features of motor functions during dual-tasking, especially uncertainty, in detecting cognitive impairment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wearable motion sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Largest Lyapunov exponent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shannon entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MCI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Early detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Executive function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motor control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomechanics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parvaneh, Saman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohler, Jane</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wendel, Christopher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zamrini, Edward</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Connor, Kathy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toosizadeh, Nima</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">120</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306356783</subfield><subfield code="w">(DE-600)1496984-1</subfield><subfield code="w">(DE-576)081952988</subfield><subfield code="x">1879-0534</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield></datafield></record></collection>
|
score |
7.401806 |