On alternative quantization for doubly weighted approximation and integration over unbounded domains
It is known that for a ϱ -weighted L q approximation of single variable functions defi...
Ausführliche Beschreibung
Autor*in: |
Kritzer, P. [verfasserIn] Pillichshammer, F. [verfasserIn] Plaskota, L. [verfasserIn] Wasilkowski, G.W. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of approximation theory - Amsterdam [u.a.] : Elsevier, 1968, 256 |
---|---|
Übergeordnetes Werk: |
volume:256 |
DOI / URN: |
10.1016/j.jat.2020.105433 |
---|
Katalog-ID: |
ELV004146247 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004146247 | ||
003 | DE-627 | ||
005 | 20230524144325.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jat.2020.105433 |2 doi | |
035 | |a (DE-627)ELV004146247 | ||
035 | |a (ELSEVIER)S0021-9045(20)30069-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.40 |2 bkl | ||
100 | 1 | |a Kritzer, P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On alternative quantization for doubly weighted approximation and integration over unbounded domains |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a It is known that for a ϱ -weighted L q approximation of single variable functions defined on a finite or infinite interval, whose r th derivatives are in a ψ -weighted L p space, the minimal error of approximations that use n samples of f is proportional to ‖ ω 1 ∕ α ‖ L 1 α ‖ f ( r ) ψ ‖ L p n − r + ( 1 ∕ p − 1 ∕ q ) + , where ω = ϱ ∕ ψ and α = r − 1 ∕ p + 1 ∕ q , provided that ‖ ω 1 ∕ α ‖ L 1 < + ∞ . Moreover, the optimal sample points are determined by quantiles of ω 1 ∕ α . In this paper, we show how the error of the best approximation changes when the sample points are determined by a quantizer κ other than ω . Our results can be applied in situations when an alternative quantizer has to be used because ω is not known exactly or is too complicated to handle computationally. The results for q = 1 are also applicable to ϱ -weighted integration over finite and infinite intervals. | ||
650 | 4 | |a Quantization | |
650 | 4 | |a weighted approximation | |
650 | 4 | |a weighted integration | |
650 | 4 | |a unbounded domains | |
650 | 4 | |a piecewise Taylor approximation | |
700 | 1 | |a Pillichshammer, F. |e verfasserin |4 aut | |
700 | 1 | |a Plaskota, L. |e verfasserin |4 aut | |
700 | 1 | |a Wasilkowski, G.W. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of approximation theory |d Amsterdam [u.a.] : Elsevier, 1968 |g 256 |h Online-Ressource |w (DE-627)266890598 |w (DE-600)1468964-9 |w (DE-576)103373136 |7 nnns |
773 | 1 | 8 | |g volume:256 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.40 |j Analysis: Allgemeines |
951 | |a AR | ||
952 | |d 256 |
author_variant |
p k pk f p fp l p lp g w gw |
---|---|
matchkey_str |
kritzerppillichshammerfplaskotalwasilkow:2020----:nlentvqatztofrobyegtdprxmtoadnert |
hierarchy_sort_str |
2020 |
bklnumber |
31.40 |
publishDate |
2020 |
allfields |
10.1016/j.jat.2020.105433 doi (DE-627)ELV004146247 (ELSEVIER)S0021-9045(20)30069-1 DE-627 ger DE-627 rda eng 510 DE-600 31.40 bkl Kritzer, P. verfasserin aut On alternative quantization for doubly weighted approximation and integration over unbounded domains 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is known that for a ϱ -weighted L q approximation of single variable functions defined on a finite or infinite interval, whose r th derivatives are in a ψ -weighted L p space, the minimal error of approximations that use n samples of f is proportional to ‖ ω 1 ∕ α ‖ L 1 α ‖ f ( r ) ψ ‖ L p n − r + ( 1 ∕ p − 1 ∕ q ) + , where ω = ϱ ∕ ψ and α = r − 1 ∕ p + 1 ∕ q , provided that ‖ ω 1 ∕ α ‖ L 1 < + ∞ . Moreover, the optimal sample points are determined by quantiles of ω 1 ∕ α . In this paper, we show how the error of the best approximation changes when the sample points are determined by a quantizer κ other than ω . Our results can be applied in situations when an alternative quantizer has to be used because ω is not known exactly or is too complicated to handle computationally. The results for q = 1 are also applicable to ϱ -weighted integration over finite and infinite intervals. Quantization weighted approximation weighted integration unbounded domains piecewise Taylor approximation Pillichshammer, F. verfasserin aut Plaskota, L. verfasserin aut Wasilkowski, G.W. verfasserin aut Enthalten in Journal of approximation theory Amsterdam [u.a.] : Elsevier, 1968 256 Online-Ressource (DE-627)266890598 (DE-600)1468964-9 (DE-576)103373136 nnns volume:256 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.40 Analysis: Allgemeines AR 256 |
spelling |
10.1016/j.jat.2020.105433 doi (DE-627)ELV004146247 (ELSEVIER)S0021-9045(20)30069-1 DE-627 ger DE-627 rda eng 510 DE-600 31.40 bkl Kritzer, P. verfasserin aut On alternative quantization for doubly weighted approximation and integration over unbounded domains 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is known that for a ϱ -weighted L q approximation of single variable functions defined on a finite or infinite interval, whose r th derivatives are in a ψ -weighted L p space, the minimal error of approximations that use n samples of f is proportional to ‖ ω 1 ∕ α ‖ L 1 α ‖ f ( r ) ψ ‖ L p n − r + ( 1 ∕ p − 1 ∕ q ) + , where ω = ϱ ∕ ψ and α = r − 1 ∕ p + 1 ∕ q , provided that ‖ ω 1 ∕ α ‖ L 1 < + ∞ . Moreover, the optimal sample points are determined by quantiles of ω 1 ∕ α . In this paper, we show how the error of the best approximation changes when the sample points are determined by a quantizer κ other than ω . Our results can be applied in situations when an alternative quantizer has to be used because ω is not known exactly or is too complicated to handle computationally. The results for q = 1 are also applicable to ϱ -weighted integration over finite and infinite intervals. Quantization weighted approximation weighted integration unbounded domains piecewise Taylor approximation Pillichshammer, F. verfasserin aut Plaskota, L. verfasserin aut Wasilkowski, G.W. verfasserin aut Enthalten in Journal of approximation theory Amsterdam [u.a.] : Elsevier, 1968 256 Online-Ressource (DE-627)266890598 (DE-600)1468964-9 (DE-576)103373136 nnns volume:256 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.40 Analysis: Allgemeines AR 256 |
allfields_unstemmed |
10.1016/j.jat.2020.105433 doi (DE-627)ELV004146247 (ELSEVIER)S0021-9045(20)30069-1 DE-627 ger DE-627 rda eng 510 DE-600 31.40 bkl Kritzer, P. verfasserin aut On alternative quantization for doubly weighted approximation and integration over unbounded domains 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is known that for a ϱ -weighted L q approximation of single variable functions defined on a finite or infinite interval, whose r th derivatives are in a ψ -weighted L p space, the minimal error of approximations that use n samples of f is proportional to ‖ ω 1 ∕ α ‖ L 1 α ‖ f ( r ) ψ ‖ L p n − r + ( 1 ∕ p − 1 ∕ q ) + , where ω = ϱ ∕ ψ and α = r − 1 ∕ p + 1 ∕ q , provided that ‖ ω 1 ∕ α ‖ L 1 < + ∞ . Moreover, the optimal sample points are determined by quantiles of ω 1 ∕ α . In this paper, we show how the error of the best approximation changes when the sample points are determined by a quantizer κ other than ω . Our results can be applied in situations when an alternative quantizer has to be used because ω is not known exactly or is too complicated to handle computationally. The results for q = 1 are also applicable to ϱ -weighted integration over finite and infinite intervals. Quantization weighted approximation weighted integration unbounded domains piecewise Taylor approximation Pillichshammer, F. verfasserin aut Plaskota, L. verfasserin aut Wasilkowski, G.W. verfasserin aut Enthalten in Journal of approximation theory Amsterdam [u.a.] : Elsevier, 1968 256 Online-Ressource (DE-627)266890598 (DE-600)1468964-9 (DE-576)103373136 nnns volume:256 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.40 Analysis: Allgemeines AR 256 |
allfieldsGer |
10.1016/j.jat.2020.105433 doi (DE-627)ELV004146247 (ELSEVIER)S0021-9045(20)30069-1 DE-627 ger DE-627 rda eng 510 DE-600 31.40 bkl Kritzer, P. verfasserin aut On alternative quantization for doubly weighted approximation and integration over unbounded domains 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is known that for a ϱ -weighted L q approximation of single variable functions defined on a finite or infinite interval, whose r th derivatives are in a ψ -weighted L p space, the minimal error of approximations that use n samples of f is proportional to ‖ ω 1 ∕ α ‖ L 1 α ‖ f ( r ) ψ ‖ L p n − r + ( 1 ∕ p − 1 ∕ q ) + , where ω = ϱ ∕ ψ and α = r − 1 ∕ p + 1 ∕ q , provided that ‖ ω 1 ∕ α ‖ L 1 < + ∞ . Moreover, the optimal sample points are determined by quantiles of ω 1 ∕ α . In this paper, we show how the error of the best approximation changes when the sample points are determined by a quantizer κ other than ω . Our results can be applied in situations when an alternative quantizer has to be used because ω is not known exactly or is too complicated to handle computationally. The results for q = 1 are also applicable to ϱ -weighted integration over finite and infinite intervals. Quantization weighted approximation weighted integration unbounded domains piecewise Taylor approximation Pillichshammer, F. verfasserin aut Plaskota, L. verfasserin aut Wasilkowski, G.W. verfasserin aut Enthalten in Journal of approximation theory Amsterdam [u.a.] : Elsevier, 1968 256 Online-Ressource (DE-627)266890598 (DE-600)1468964-9 (DE-576)103373136 nnns volume:256 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.40 Analysis: Allgemeines AR 256 |
allfieldsSound |
10.1016/j.jat.2020.105433 doi (DE-627)ELV004146247 (ELSEVIER)S0021-9045(20)30069-1 DE-627 ger DE-627 rda eng 510 DE-600 31.40 bkl Kritzer, P. verfasserin aut On alternative quantization for doubly weighted approximation and integration over unbounded domains 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is known that for a ϱ -weighted L q approximation of single variable functions defined on a finite or infinite interval, whose r th derivatives are in a ψ -weighted L p space, the minimal error of approximations that use n samples of f is proportional to ‖ ω 1 ∕ α ‖ L 1 α ‖ f ( r ) ψ ‖ L p n − r + ( 1 ∕ p − 1 ∕ q ) + , where ω = ϱ ∕ ψ and α = r − 1 ∕ p + 1 ∕ q , provided that ‖ ω 1 ∕ α ‖ L 1 < + ∞ . Moreover, the optimal sample points are determined by quantiles of ω 1 ∕ α . In this paper, we show how the error of the best approximation changes when the sample points are determined by a quantizer κ other than ω . Our results can be applied in situations when an alternative quantizer has to be used because ω is not known exactly or is too complicated to handle computationally. The results for q = 1 are also applicable to ϱ -weighted integration over finite and infinite intervals. Quantization weighted approximation weighted integration unbounded domains piecewise Taylor approximation Pillichshammer, F. verfasserin aut Plaskota, L. verfasserin aut Wasilkowski, G.W. verfasserin aut Enthalten in Journal of approximation theory Amsterdam [u.a.] : Elsevier, 1968 256 Online-Ressource (DE-627)266890598 (DE-600)1468964-9 (DE-576)103373136 nnns volume:256 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 31.40 Analysis: Allgemeines AR 256 |
language |
English |
source |
Enthalten in Journal of approximation theory 256 volume:256 |
sourceStr |
Enthalten in Journal of approximation theory 256 volume:256 |
format_phy_str_mv |
Article |
bklname |
Analysis: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Quantization weighted approximation weighted integration unbounded domains piecewise Taylor approximation |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of approximation theory |
authorswithroles_txt_mv |
Kritzer, P. @@aut@@ Pillichshammer, F. @@aut@@ Plaskota, L. @@aut@@ Wasilkowski, G.W. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
266890598 |
dewey-sort |
3510 |
id |
ELV004146247 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004146247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144325.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jat.2020.105433</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004146247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9045(20)30069-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kritzer, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On alternative quantization for doubly weighted approximation and integration over unbounded domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is known that for a ϱ -weighted L q approximation of single variable functions defined on a finite or infinite interval, whose r th derivatives are in a ψ -weighted L p space, the minimal error of approximations that use n samples of f is proportional to ‖ ω 1 ∕ α ‖ L 1 α ‖ f ( r ) ψ ‖ L p n − r + ( 1 ∕ p − 1 ∕ q ) + , where ω = ϱ ∕ ψ and α = r − 1 ∕ p + 1 ∕ q , provided that ‖ ω 1 ∕ α ‖ L 1 < + ∞ . Moreover, the optimal sample points are determined by quantiles of ω 1 ∕ α . In this paper, we show how the error of the best approximation changes when the sample points are determined by a quantizer κ other than ω . Our results can be applied in situations when an alternative quantizer has to be used because ω is not known exactly or is too complicated to handle computationally. The results for q = 1 are also applicable to ϱ -weighted integration over finite and infinite intervals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unbounded domains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">piecewise Taylor approximation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pillichshammer, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plaskota, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wasilkowski, G.W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of approximation theory</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1968</subfield><subfield code="g">256</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266890598</subfield><subfield code="w">(DE-600)1468964-9</subfield><subfield code="w">(DE-576)103373136</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:256</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.40</subfield><subfield code="j">Analysis: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">256</subfield></datafield></record></collection>
|
author |
Kritzer, P. |
spellingShingle |
Kritzer, P. ddc 510 bkl 31.40 misc Quantization misc weighted approximation misc weighted integration misc unbounded domains misc piecewise Taylor approximation On alternative quantization for doubly weighted approximation and integration over unbounded domains |
authorStr |
Kritzer, P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266890598 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
510 DE-600 31.40 bkl On alternative quantization for doubly weighted approximation and integration over unbounded domains Quantization weighted approximation weighted integration unbounded domains piecewise Taylor approximation |
topic |
ddc 510 bkl 31.40 misc Quantization misc weighted approximation misc weighted integration misc unbounded domains misc piecewise Taylor approximation |
topic_unstemmed |
ddc 510 bkl 31.40 misc Quantization misc weighted approximation misc weighted integration misc unbounded domains misc piecewise Taylor approximation |
topic_browse |
ddc 510 bkl 31.40 misc Quantization misc weighted approximation misc weighted integration misc unbounded domains misc piecewise Taylor approximation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of approximation theory |
hierarchy_parent_id |
266890598 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of approximation theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266890598 (DE-600)1468964-9 (DE-576)103373136 |
title |
On alternative quantization for doubly weighted approximation and integration over unbounded domains |
ctrlnum |
(DE-627)ELV004146247 (ELSEVIER)S0021-9045(20)30069-1 |
title_full |
On alternative quantization for doubly weighted approximation and integration over unbounded domains |
author_sort |
Kritzer, P. |
journal |
Journal of approximation theory |
journalStr |
Journal of approximation theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Kritzer, P. Pillichshammer, F. Plaskota, L. Wasilkowski, G.W. |
container_volume |
256 |
class |
510 DE-600 31.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kritzer, P. |
doi_str_mv |
10.1016/j.jat.2020.105433 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
on alternative quantization for doubly weighted approximation and integration over unbounded domains |
title_auth |
On alternative quantization for doubly weighted approximation and integration over unbounded domains |
abstract |
It is known that for a ϱ -weighted L q approximation of single variable functions defined on a finite or infinite interval, whose r th derivatives are in a ψ -weighted L p space, the minimal error of approximations that use n samples of f is proportional to ‖ ω 1 ∕ α ‖ L 1 α ‖ f ( r ) ψ ‖ L p n − r + ( 1 ∕ p − 1 ∕ q ) + , where ω = ϱ ∕ ψ and α = r − 1 ∕ p + 1 ∕ q , provided that ‖ ω 1 ∕ α ‖ L 1 < + ∞ . Moreover, the optimal sample points are determined by quantiles of ω 1 ∕ α . In this paper, we show how the error of the best approximation changes when the sample points are determined by a quantizer κ other than ω . Our results can be applied in situations when an alternative quantizer has to be used because ω is not known exactly or is too complicated to handle computationally. The results for q = 1 are also applicable to ϱ -weighted integration over finite and infinite intervals. |
abstractGer |
It is known that for a ϱ -weighted L q approximation of single variable functions defined on a finite or infinite interval, whose r th derivatives are in a ψ -weighted L p space, the minimal error of approximations that use n samples of f is proportional to ‖ ω 1 ∕ α ‖ L 1 α ‖ f ( r ) ψ ‖ L p n − r + ( 1 ∕ p − 1 ∕ q ) + , where ω = ϱ ∕ ψ and α = r − 1 ∕ p + 1 ∕ q , provided that ‖ ω 1 ∕ α ‖ L 1 < + ∞ . Moreover, the optimal sample points are determined by quantiles of ω 1 ∕ α . In this paper, we show how the error of the best approximation changes when the sample points are determined by a quantizer κ other than ω . Our results can be applied in situations when an alternative quantizer has to be used because ω is not known exactly or is too complicated to handle computationally. The results for q = 1 are also applicable to ϱ -weighted integration over finite and infinite intervals. |
abstract_unstemmed |
It is known that for a ϱ -weighted L q approximation of single variable functions defined on a finite or infinite interval, whose r th derivatives are in a ψ -weighted L p space, the minimal error of approximations that use n samples of f is proportional to ‖ ω 1 ∕ α ‖ L 1 α ‖ f ( r ) ψ ‖ L p n − r + ( 1 ∕ p − 1 ∕ q ) + , where ω = ϱ ∕ ψ and α = r − 1 ∕ p + 1 ∕ q , provided that ‖ ω 1 ∕ α ‖ L 1 < + ∞ . Moreover, the optimal sample points are determined by quantiles of ω 1 ∕ α . In this paper, we show how the error of the best approximation changes when the sample points are determined by a quantizer κ other than ω . Our results can be applied in situations when an alternative quantizer has to be used because ω is not known exactly or is too complicated to handle computationally. The results for q = 1 are also applicable to ϱ -weighted integration over finite and infinite intervals. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
On alternative quantization for doubly weighted approximation and integration over unbounded domains |
remote_bool |
true |
author2 |
Pillichshammer, F. Plaskota, L. Wasilkowski, G.W. |
author2Str |
Pillichshammer, F. Plaskota, L. Wasilkowski, G.W. |
ppnlink |
266890598 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jat.2020.105433 |
up_date |
2024-07-06T22:00:20.796Z |
_version_ |
1803868670051483648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004146247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144325.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jat.2020.105433</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004146247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9045(20)30069-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kritzer, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On alternative quantization for doubly weighted approximation and integration over unbounded domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is known that for a ϱ -weighted L q approximation of single variable functions defined on a finite or infinite interval, whose r th derivatives are in a ψ -weighted L p space, the minimal error of approximations that use n samples of f is proportional to ‖ ω 1 ∕ α ‖ L 1 α ‖ f ( r ) ψ ‖ L p n − r + ( 1 ∕ p − 1 ∕ q ) + , where ω = ϱ ∕ ψ and α = r − 1 ∕ p + 1 ∕ q , provided that ‖ ω 1 ∕ α ‖ L 1 < + ∞ . Moreover, the optimal sample points are determined by quantiles of ω 1 ∕ α . In this paper, we show how the error of the best approximation changes when the sample points are determined by a quantizer κ other than ω . Our results can be applied in situations when an alternative quantizer has to be used because ω is not known exactly or is too complicated to handle computationally. The results for q = 1 are also applicable to ϱ -weighted integration over finite and infinite intervals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unbounded domains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">piecewise Taylor approximation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pillichshammer, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plaskota, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wasilkowski, G.W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of approximation theory</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1968</subfield><subfield code="g">256</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266890598</subfield><subfield code="w">(DE-600)1468964-9</subfield><subfield code="w">(DE-576)103373136</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:256</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.40</subfield><subfield code="j">Analysis: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">256</subfield></datafield></record></collection>
|
score |
7.4001513 |