Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China
The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Dat...
Ausführliche Beschreibung
Autor*in: |
Zhang, Pei [verfasserIn] Zhou, Xiaoyuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The science of the total environment - Amsterdam [u.a.] : Elsevier Science, 1972, 733 |
---|---|
Übergeordnetes Werk: |
volume:733 |
DOI / URN: |
10.1016/j.scitotenv.2020.139114 |
---|
Katalog-ID: |
ELV004231325 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004231325 | ||
003 | DE-627 | ||
005 | 20230524140450.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.scitotenv.2020.139114 |2 doi | |
035 | |a (DE-627)ELV004231325 | ||
035 | |a (ELSEVIER)S0048-9697(20)32631-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 610 |q DE-600 |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Zhang, Pei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013–2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34–4.16%), 6.38% (95%CI: 4.79–7.97%), and 3.81% (95%CI: 2.13–5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable. | ||
650 | 4 | |a Particulate matter pollution | |
650 | 4 | |a Mental disorders | |
650 | 4 | |a Cost of illness method | |
650 | 4 | |a Economic burden | |
700 | 1 | |a Zhou, Xiaoyuan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The science of the total environment |d Amsterdam [u.a.] : Elsevier Science, 1972 |g 733 |h Online-Ressource |w (DE-627)306591456 |w (DE-600)1498726-0 |w (DE-576)081953178 |x 1879-1026 |7 nnns |
773 | 1 | 8 | |g volume:733 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 43.12 |j Umweltchemie |
936 | b | k | |a 43.13 |j Umwelttoxikologie |
936 | b | k | |a 44.13 |j Medizinische Ökologie |
951 | |a AR | ||
952 | |d 733 |
author_variant |
p z pz x z xz |
---|---|
matchkey_str |
article:18791026:2020----::elhneooiipcsfatcltmtepluinnoptldisosomnadsr |
hierarchy_sort_str |
2020 |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2020 |
allfields |
10.1016/j.scitotenv.2020.139114 doi (DE-627)ELV004231325 (ELSEVIER)S0048-9697(20)32631-0 DE-627 ger DE-627 rda eng 333.7 610 DE-600 43.12 bkl 43.13 bkl 44.13 bkl Zhang, Pei verfasserin aut Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013–2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34–4.16%), 6.38% (95%CI: 4.79–7.97%), and 3.81% (95%CI: 2.13–5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable. Particulate matter pollution Mental disorders Cost of illness method Economic burden Zhou, Xiaoyuan verfasserin aut Enthalten in The science of the total environment Amsterdam [u.a.] : Elsevier Science, 1972 733 Online-Ressource (DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 1879-1026 nnns volume:733 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.12 Umweltchemie 43.13 Umwelttoxikologie 44.13 Medizinische Ökologie AR 733 |
spelling |
10.1016/j.scitotenv.2020.139114 doi (DE-627)ELV004231325 (ELSEVIER)S0048-9697(20)32631-0 DE-627 ger DE-627 rda eng 333.7 610 DE-600 43.12 bkl 43.13 bkl 44.13 bkl Zhang, Pei verfasserin aut Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013–2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34–4.16%), 6.38% (95%CI: 4.79–7.97%), and 3.81% (95%CI: 2.13–5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable. Particulate matter pollution Mental disorders Cost of illness method Economic burden Zhou, Xiaoyuan verfasserin aut Enthalten in The science of the total environment Amsterdam [u.a.] : Elsevier Science, 1972 733 Online-Ressource (DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 1879-1026 nnns volume:733 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.12 Umweltchemie 43.13 Umwelttoxikologie 44.13 Medizinische Ökologie AR 733 |
allfields_unstemmed |
10.1016/j.scitotenv.2020.139114 doi (DE-627)ELV004231325 (ELSEVIER)S0048-9697(20)32631-0 DE-627 ger DE-627 rda eng 333.7 610 DE-600 43.12 bkl 43.13 bkl 44.13 bkl Zhang, Pei verfasserin aut Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013–2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34–4.16%), 6.38% (95%CI: 4.79–7.97%), and 3.81% (95%CI: 2.13–5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable. Particulate matter pollution Mental disorders Cost of illness method Economic burden Zhou, Xiaoyuan verfasserin aut Enthalten in The science of the total environment Amsterdam [u.a.] : Elsevier Science, 1972 733 Online-Ressource (DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 1879-1026 nnns volume:733 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.12 Umweltchemie 43.13 Umwelttoxikologie 44.13 Medizinische Ökologie AR 733 |
allfieldsGer |
10.1016/j.scitotenv.2020.139114 doi (DE-627)ELV004231325 (ELSEVIER)S0048-9697(20)32631-0 DE-627 ger DE-627 rda eng 333.7 610 DE-600 43.12 bkl 43.13 bkl 44.13 bkl Zhang, Pei verfasserin aut Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013–2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34–4.16%), 6.38% (95%CI: 4.79–7.97%), and 3.81% (95%CI: 2.13–5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable. Particulate matter pollution Mental disorders Cost of illness method Economic burden Zhou, Xiaoyuan verfasserin aut Enthalten in The science of the total environment Amsterdam [u.a.] : Elsevier Science, 1972 733 Online-Ressource (DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 1879-1026 nnns volume:733 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.12 Umweltchemie 43.13 Umwelttoxikologie 44.13 Medizinische Ökologie AR 733 |
allfieldsSound |
10.1016/j.scitotenv.2020.139114 doi (DE-627)ELV004231325 (ELSEVIER)S0048-9697(20)32631-0 DE-627 ger DE-627 rda eng 333.7 610 DE-600 43.12 bkl 43.13 bkl 44.13 bkl Zhang, Pei verfasserin aut Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013–2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34–4.16%), 6.38% (95%CI: 4.79–7.97%), and 3.81% (95%CI: 2.13–5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable. Particulate matter pollution Mental disorders Cost of illness method Economic burden Zhou, Xiaoyuan verfasserin aut Enthalten in The science of the total environment Amsterdam [u.a.] : Elsevier Science, 1972 733 Online-Ressource (DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 1879-1026 nnns volume:733 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.12 Umweltchemie 43.13 Umwelttoxikologie 44.13 Medizinische Ökologie AR 733 |
language |
English |
source |
Enthalten in The science of the total environment 733 volume:733 |
sourceStr |
Enthalten in The science of the total environment 733 volume:733 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Particulate matter pollution Mental disorders Cost of illness method Economic burden |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
The science of the total environment |
authorswithroles_txt_mv |
Zhang, Pei @@aut@@ Zhou, Xiaoyuan @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306591456 |
dewey-sort |
3333.7 |
id |
ELV004231325 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004231325</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524140450.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2020.139114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004231325</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(20)32631-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Pei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013–2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34–4.16%), 6.38% (95%CI: 4.79–7.97%), and 3.81% (95%CI: 2.13–5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particulate matter pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mental disorders</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost of illness method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic burden</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Xiaoyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The science of the total environment</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1972</subfield><subfield code="g">733</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591456</subfield><subfield code="w">(DE-600)1498726-0</subfield><subfield code="w">(DE-576)081953178</subfield><subfield code="x">1879-1026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:733</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">733</subfield></datafield></record></collection>
|
author |
Zhang, Pei |
spellingShingle |
Zhang, Pei ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 misc Particulate matter pollution misc Mental disorders misc Cost of illness method misc Economic burden Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China |
authorStr |
Zhang, Pei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306591456 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-1026 |
topic_title |
333.7 610 DE-600 43.12 bkl 43.13 bkl 44.13 bkl Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China Particulate matter pollution Mental disorders Cost of illness method Economic burden |
topic |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 misc Particulate matter pollution misc Mental disorders misc Cost of illness method misc Economic burden |
topic_unstemmed |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 misc Particulate matter pollution misc Mental disorders misc Cost of illness method misc Economic burden |
topic_browse |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 misc Particulate matter pollution misc Mental disorders misc Cost of illness method misc Economic burden |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The science of the total environment |
hierarchy_parent_id |
306591456 |
dewey-tens |
330 - Economics 610 - Medicine & health |
hierarchy_top_title |
The science of the total environment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306591456 (DE-600)1498726-0 (DE-576)081953178 |
title |
Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China |
ctrlnum |
(DE-627)ELV004231325 (ELSEVIER)S0048-9697(20)32631-0 |
title_full |
Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China |
author_sort |
Zhang, Pei |
journal |
The science of the total environment |
journalStr |
The science of the total environment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Pei Zhou, Xiaoyuan |
container_volume |
733 |
class |
333.7 610 DE-600 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Pei |
doi_str_mv |
10.1016/j.scitotenv.2020.139114 |
dewey-full |
333.7 610 |
author2-role |
verfasserin |
title_sort |
health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in chengdu, southwestern china |
title_auth |
Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China |
abstract |
The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013–2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34–4.16%), 6.38% (95%CI: 4.79–7.97%), and 3.81% (95%CI: 2.13–5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable. |
abstractGer |
The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013–2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34–4.16%), 6.38% (95%CI: 4.79–7.97%), and 3.81% (95%CI: 2.13–5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable. |
abstract_unstemmed |
The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013–2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34–4.16%), 6.38% (95%CI: 4.79–7.97%), and 3.81% (95%CI: 2.13–5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China |
remote_bool |
true |
author2 |
Zhou, Xiaoyuan |
author2Str |
Zhou, Xiaoyuan |
ppnlink |
306591456 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.scitotenv.2020.139114 |
up_date |
2024-07-06T22:17:41.712Z |
_version_ |
1803869761531019264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004231325</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524140450.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2020.139114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004231325</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(20)32631-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Pei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013–2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34–4.16%), 6.38% (95%CI: 4.79–7.97%), and 3.81% (95%CI: 2.13–5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particulate matter pollution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mental disorders</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost of illness method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic burden</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Xiaoyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The science of the total environment</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1972</subfield><subfield code="g">733</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591456</subfield><subfield code="w">(DE-600)1498726-0</subfield><subfield code="w">(DE-576)081953178</subfield><subfield code="x">1879-1026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:733</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">733</subfield></datafield></record></collection>
|
score |
7.4007654 |