Scale-up of electrokinetic process for dredged sediments remediation
Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of l...
Ausführliche Beschreibung
Autor*in: |
Benamar, A. [verfasserIn] Ammami, M.T. [verfasserIn] Song, Y. [verfasserIn] Portet-Koltalo, F. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Electrochimica acta - New York, NY [u.a.] : Elsevier, 1959, 352 |
---|---|
Übergeordnetes Werk: |
volume:352 |
DOI / URN: |
10.1016/j.electacta.2020.136488 |
---|
Katalog-ID: |
ELV00426682X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00426682X | ||
003 | DE-627 | ||
005 | 20230524142840.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.electacta.2020.136488 |2 doi | |
035 | |a (DE-627)ELV00426682X | ||
035 | |a (ELSEVIER)S0013-4686(20)30881-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 35.00 |2 bkl | ||
100 | 1 | |a Benamar, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Scale-up of electrokinetic process for dredged sediments remediation |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of laboratory experiments performed at two scales (involving 0.4 kg and 40 kg of dredged sediment) to evaluate the potential of EKR process on both organic and inorganic contaminants, and the scaling-up effect. Mixtures of eco-friendly enhancing additives were used: a biodegradable chelating agent (citric acid) combined with a nonionic surfactant (Tween 20) were promising candidates for the simultaneous EK remediation of a multi-contaminated harbor sediment. The values of energy consumption from the large scale tests showed that efficient decrease of pollutant concentrations and sustainable remediation could be achieved with moderate energy costs. Obtained results also indicated that better removals of Cr, PAHs and PCBs were achieved with the large-scale device using less energy and additives. However, the distribution of the pollutants in the specimen after the EK remediation indicated that the electric field did not totally control the migration process and that the interaction with likely heterogeneity and inertial effects reduced the EK effectiveness at the large scale. This scaling-up investigation allows considering EK tests at a larger scale (field installation) with adjusted parameters from a small-scale investigation. | ||
650 | 4 | |a Electrokinetic remediation | |
650 | 4 | |a Scale-up | |
650 | 4 | |a Sediment | |
650 | 4 | |a Metals | |
650 | 4 | |a PAHs | |
650 | 4 | |a PCBs | |
700 | 1 | |a Ammami, M.T. |e verfasserin |4 aut | |
700 | 1 | |a Song, Y. |e verfasserin |4 aut | |
700 | 1 | |a Portet-Koltalo, F. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Electrochimica acta |d New York, NY [u.a.] : Elsevier, 1959 |g 352 |h Online-Ressource |w (DE-627)300897561 |w (DE-600)1483548-4 |w (DE-576)094752451 |x 1873-3859 |7 nnns |
773 | 1 | 8 | |g volume:352 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.00 |j Chemie: Allgemeines |
951 | |a AR | ||
952 | |d 352 |
author_variant |
a b ab m a ma y s ys f p k fpk |
---|---|
matchkey_str |
article:18733859:2020----::cluoeetoieipoesodegdei |
hierarchy_sort_str |
2020 |
bklnumber |
35.00 |
publishDate |
2020 |
allfields |
10.1016/j.electacta.2020.136488 doi (DE-627)ELV00426682X (ELSEVIER)S0013-4686(20)30881-1 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Benamar, A. verfasserin aut Scale-up of electrokinetic process for dredged sediments remediation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of laboratory experiments performed at two scales (involving 0.4 kg and 40 kg of dredged sediment) to evaluate the potential of EKR process on both organic and inorganic contaminants, and the scaling-up effect. Mixtures of eco-friendly enhancing additives were used: a biodegradable chelating agent (citric acid) combined with a nonionic surfactant (Tween 20) were promising candidates for the simultaneous EK remediation of a multi-contaminated harbor sediment. The values of energy consumption from the large scale tests showed that efficient decrease of pollutant concentrations and sustainable remediation could be achieved with moderate energy costs. Obtained results also indicated that better removals of Cr, PAHs and PCBs were achieved with the large-scale device using less energy and additives. However, the distribution of the pollutants in the specimen after the EK remediation indicated that the electric field did not totally control the migration process and that the interaction with likely heterogeneity and inertial effects reduced the EK effectiveness at the large scale. This scaling-up investigation allows considering EK tests at a larger scale (field installation) with adjusted parameters from a small-scale investigation. Electrokinetic remediation Scale-up Sediment Metals PAHs PCBs Ammami, M.T. verfasserin aut Song, Y. verfasserin aut Portet-Koltalo, F. verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 352 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:352 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 352 |
spelling |
10.1016/j.electacta.2020.136488 doi (DE-627)ELV00426682X (ELSEVIER)S0013-4686(20)30881-1 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Benamar, A. verfasserin aut Scale-up of electrokinetic process for dredged sediments remediation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of laboratory experiments performed at two scales (involving 0.4 kg and 40 kg of dredged sediment) to evaluate the potential of EKR process on both organic and inorganic contaminants, and the scaling-up effect. Mixtures of eco-friendly enhancing additives were used: a biodegradable chelating agent (citric acid) combined with a nonionic surfactant (Tween 20) were promising candidates for the simultaneous EK remediation of a multi-contaminated harbor sediment. The values of energy consumption from the large scale tests showed that efficient decrease of pollutant concentrations and sustainable remediation could be achieved with moderate energy costs. Obtained results also indicated that better removals of Cr, PAHs and PCBs were achieved with the large-scale device using less energy and additives. However, the distribution of the pollutants in the specimen after the EK remediation indicated that the electric field did not totally control the migration process and that the interaction with likely heterogeneity and inertial effects reduced the EK effectiveness at the large scale. This scaling-up investigation allows considering EK tests at a larger scale (field installation) with adjusted parameters from a small-scale investigation. Electrokinetic remediation Scale-up Sediment Metals PAHs PCBs Ammami, M.T. verfasserin aut Song, Y. verfasserin aut Portet-Koltalo, F. verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 352 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:352 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 352 |
allfields_unstemmed |
10.1016/j.electacta.2020.136488 doi (DE-627)ELV00426682X (ELSEVIER)S0013-4686(20)30881-1 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Benamar, A. verfasserin aut Scale-up of electrokinetic process for dredged sediments remediation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of laboratory experiments performed at two scales (involving 0.4 kg and 40 kg of dredged sediment) to evaluate the potential of EKR process on both organic and inorganic contaminants, and the scaling-up effect. Mixtures of eco-friendly enhancing additives were used: a biodegradable chelating agent (citric acid) combined with a nonionic surfactant (Tween 20) were promising candidates for the simultaneous EK remediation of a multi-contaminated harbor sediment. The values of energy consumption from the large scale tests showed that efficient decrease of pollutant concentrations and sustainable remediation could be achieved with moderate energy costs. Obtained results also indicated that better removals of Cr, PAHs and PCBs were achieved with the large-scale device using less energy and additives. However, the distribution of the pollutants in the specimen after the EK remediation indicated that the electric field did not totally control the migration process and that the interaction with likely heterogeneity and inertial effects reduced the EK effectiveness at the large scale. This scaling-up investigation allows considering EK tests at a larger scale (field installation) with adjusted parameters from a small-scale investigation. Electrokinetic remediation Scale-up Sediment Metals PAHs PCBs Ammami, M.T. verfasserin aut Song, Y. verfasserin aut Portet-Koltalo, F. verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 352 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:352 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 352 |
allfieldsGer |
10.1016/j.electacta.2020.136488 doi (DE-627)ELV00426682X (ELSEVIER)S0013-4686(20)30881-1 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Benamar, A. verfasserin aut Scale-up of electrokinetic process for dredged sediments remediation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of laboratory experiments performed at two scales (involving 0.4 kg and 40 kg of dredged sediment) to evaluate the potential of EKR process on both organic and inorganic contaminants, and the scaling-up effect. Mixtures of eco-friendly enhancing additives were used: a biodegradable chelating agent (citric acid) combined with a nonionic surfactant (Tween 20) were promising candidates for the simultaneous EK remediation of a multi-contaminated harbor sediment. The values of energy consumption from the large scale tests showed that efficient decrease of pollutant concentrations and sustainable remediation could be achieved with moderate energy costs. Obtained results also indicated that better removals of Cr, PAHs and PCBs were achieved with the large-scale device using less energy and additives. However, the distribution of the pollutants in the specimen after the EK remediation indicated that the electric field did not totally control the migration process and that the interaction with likely heterogeneity and inertial effects reduced the EK effectiveness at the large scale. This scaling-up investigation allows considering EK tests at a larger scale (field installation) with adjusted parameters from a small-scale investigation. Electrokinetic remediation Scale-up Sediment Metals PAHs PCBs Ammami, M.T. verfasserin aut Song, Y. verfasserin aut Portet-Koltalo, F. verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 352 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:352 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 352 |
allfieldsSound |
10.1016/j.electacta.2020.136488 doi (DE-627)ELV00426682X (ELSEVIER)S0013-4686(20)30881-1 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Benamar, A. verfasserin aut Scale-up of electrokinetic process for dredged sediments remediation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of laboratory experiments performed at two scales (involving 0.4 kg and 40 kg of dredged sediment) to evaluate the potential of EKR process on both organic and inorganic contaminants, and the scaling-up effect. Mixtures of eco-friendly enhancing additives were used: a biodegradable chelating agent (citric acid) combined with a nonionic surfactant (Tween 20) were promising candidates for the simultaneous EK remediation of a multi-contaminated harbor sediment. The values of energy consumption from the large scale tests showed that efficient decrease of pollutant concentrations and sustainable remediation could be achieved with moderate energy costs. Obtained results also indicated that better removals of Cr, PAHs and PCBs were achieved with the large-scale device using less energy and additives. However, the distribution of the pollutants in the specimen after the EK remediation indicated that the electric field did not totally control the migration process and that the interaction with likely heterogeneity and inertial effects reduced the EK effectiveness at the large scale. This scaling-up investigation allows considering EK tests at a larger scale (field installation) with adjusted parameters from a small-scale investigation. Electrokinetic remediation Scale-up Sediment Metals PAHs PCBs Ammami, M.T. verfasserin aut Song, Y. verfasserin aut Portet-Koltalo, F. verfasserin aut Enthalten in Electrochimica acta New York, NY [u.a.] : Elsevier, 1959 352 Online-Ressource (DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 1873-3859 nnns volume:352 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 352 |
language |
English |
source |
Enthalten in Electrochimica acta 352 volume:352 |
sourceStr |
Enthalten in Electrochimica acta 352 volume:352 |
format_phy_str_mv |
Article |
bklname |
Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Electrokinetic remediation Scale-up Sediment Metals PAHs PCBs |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Electrochimica acta |
authorswithroles_txt_mv |
Benamar, A. @@aut@@ Ammami, M.T. @@aut@@ Song, Y. @@aut@@ Portet-Koltalo, F. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
300897561 |
dewey-sort |
3540 |
id |
ELV00426682X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00426682X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142840.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.electacta.2020.136488</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00426682X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-4686(20)30881-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benamar, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scale-up of electrokinetic process for dredged sediments remediation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of laboratory experiments performed at two scales (involving 0.4 kg and 40 kg of dredged sediment) to evaluate the potential of EKR process on both organic and inorganic contaminants, and the scaling-up effect. Mixtures of eco-friendly enhancing additives were used: a biodegradable chelating agent (citric acid) combined with a nonionic surfactant (Tween 20) were promising candidates for the simultaneous EK remediation of a multi-contaminated harbor sediment. The values of energy consumption from the large scale tests showed that efficient decrease of pollutant concentrations and sustainable remediation could be achieved with moderate energy costs. Obtained results also indicated that better removals of Cr, PAHs and PCBs were achieved with the large-scale device using less energy and additives. However, the distribution of the pollutants in the specimen after the EK remediation indicated that the electric field did not totally control the migration process and that the interaction with likely heterogeneity and inertial effects reduced the EK effectiveness at the large scale. This scaling-up investigation allows considering EK tests at a larger scale (field installation) with adjusted parameters from a small-scale investigation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrokinetic remediation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale-up</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sediment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PAHs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PCBs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ammami, M.T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Portet-Koltalo, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Electrochimica acta</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1959</subfield><subfield code="g">352</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300897561</subfield><subfield code="w">(DE-600)1483548-4</subfield><subfield code="w">(DE-576)094752451</subfield><subfield code="x">1873-3859</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:352</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">352</subfield></datafield></record></collection>
|
author |
Benamar, A. |
spellingShingle |
Benamar, A. ddc 540 bkl 35.00 misc Electrokinetic remediation misc Scale-up misc Sediment misc Metals misc PAHs misc PCBs Scale-up of electrokinetic process for dredged sediments remediation |
authorStr |
Benamar, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300897561 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3859 |
topic_title |
540 DE-600 35.00 bkl Scale-up of electrokinetic process for dredged sediments remediation Electrokinetic remediation Scale-up Sediment Metals PAHs PCBs |
topic |
ddc 540 bkl 35.00 misc Electrokinetic remediation misc Scale-up misc Sediment misc Metals misc PAHs misc PCBs |
topic_unstemmed |
ddc 540 bkl 35.00 misc Electrokinetic remediation misc Scale-up misc Sediment misc Metals misc PAHs misc PCBs |
topic_browse |
ddc 540 bkl 35.00 misc Electrokinetic remediation misc Scale-up misc Sediment misc Metals misc PAHs misc PCBs |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electrochimica acta |
hierarchy_parent_id |
300897561 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Electrochimica acta |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300897561 (DE-600)1483548-4 (DE-576)094752451 |
title |
Scale-up of electrokinetic process for dredged sediments remediation |
ctrlnum |
(DE-627)ELV00426682X (ELSEVIER)S0013-4686(20)30881-1 |
title_full |
Scale-up of electrokinetic process for dredged sediments remediation |
author_sort |
Benamar, A. |
journal |
Electrochimica acta |
journalStr |
Electrochimica acta |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Benamar, A. Ammami, M.T. Song, Y. Portet-Koltalo, F. |
container_volume |
352 |
class |
540 DE-600 35.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Benamar, A. |
doi_str_mv |
10.1016/j.electacta.2020.136488 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
scale-up of electrokinetic process for dredged sediments remediation |
title_auth |
Scale-up of electrokinetic process for dredged sediments remediation |
abstract |
Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of laboratory experiments performed at two scales (involving 0.4 kg and 40 kg of dredged sediment) to evaluate the potential of EKR process on both organic and inorganic contaminants, and the scaling-up effect. Mixtures of eco-friendly enhancing additives were used: a biodegradable chelating agent (citric acid) combined with a nonionic surfactant (Tween 20) were promising candidates for the simultaneous EK remediation of a multi-contaminated harbor sediment. The values of energy consumption from the large scale tests showed that efficient decrease of pollutant concentrations and sustainable remediation could be achieved with moderate energy costs. Obtained results also indicated that better removals of Cr, PAHs and PCBs were achieved with the large-scale device using less energy and additives. However, the distribution of the pollutants in the specimen after the EK remediation indicated that the electric field did not totally control the migration process and that the interaction with likely heterogeneity and inertial effects reduced the EK effectiveness at the large scale. This scaling-up investigation allows considering EK tests at a larger scale (field installation) with adjusted parameters from a small-scale investigation. |
abstractGer |
Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of laboratory experiments performed at two scales (involving 0.4 kg and 40 kg of dredged sediment) to evaluate the potential of EKR process on both organic and inorganic contaminants, and the scaling-up effect. Mixtures of eco-friendly enhancing additives were used: a biodegradable chelating agent (citric acid) combined with a nonionic surfactant (Tween 20) were promising candidates for the simultaneous EK remediation of a multi-contaminated harbor sediment. The values of energy consumption from the large scale tests showed that efficient decrease of pollutant concentrations and sustainable remediation could be achieved with moderate energy costs. Obtained results also indicated that better removals of Cr, PAHs and PCBs were achieved with the large-scale device using less energy and additives. However, the distribution of the pollutants in the specimen after the EK remediation indicated that the electric field did not totally control the migration process and that the interaction with likely heterogeneity and inertial effects reduced the EK effectiveness at the large scale. This scaling-up investigation allows considering EK tests at a larger scale (field installation) with adjusted parameters from a small-scale investigation. |
abstract_unstemmed |
Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of laboratory experiments performed at two scales (involving 0.4 kg and 40 kg of dredged sediment) to evaluate the potential of EKR process on both organic and inorganic contaminants, and the scaling-up effect. Mixtures of eco-friendly enhancing additives were used: a biodegradable chelating agent (citric acid) combined with a nonionic surfactant (Tween 20) were promising candidates for the simultaneous EK remediation of a multi-contaminated harbor sediment. The values of energy consumption from the large scale tests showed that efficient decrease of pollutant concentrations and sustainable remediation could be achieved with moderate energy costs. Obtained results also indicated that better removals of Cr, PAHs and PCBs were achieved with the large-scale device using less energy and additives. However, the distribution of the pollutants in the specimen after the EK remediation indicated that the electric field did not totally control the migration process and that the interaction with likely heterogeneity and inertial effects reduced the EK effectiveness at the large scale. This scaling-up investigation allows considering EK tests at a larger scale (field installation) with adjusted parameters from a small-scale investigation. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Scale-up of electrokinetic process for dredged sediments remediation |
remote_bool |
true |
author2 |
Ammami, M.T. Song, Y. Portet-Koltalo, F. |
author2Str |
Ammami, M.T. Song, Y. Portet-Koltalo, F. |
ppnlink |
300897561 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.electacta.2020.136488 |
up_date |
2024-07-06T22:24:58.344Z |
_version_ |
1803870219372855296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00426682X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142840.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.electacta.2020.136488</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00426682X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-4686(20)30881-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benamar, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scale-up of electrokinetic process for dredged sediments remediation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most of electrokinetic remediation (EKR) reported researchs were performed on small-scale laboratory devices and less field-scale studies are available in literature. Understanding the scaling-up process is essential for the application of the EKR at field scale. This paper presents the results of laboratory experiments performed at two scales (involving 0.4 kg and 40 kg of dredged sediment) to evaluate the potential of EKR process on both organic and inorganic contaminants, and the scaling-up effect. Mixtures of eco-friendly enhancing additives were used: a biodegradable chelating agent (citric acid) combined with a nonionic surfactant (Tween 20) were promising candidates for the simultaneous EK remediation of a multi-contaminated harbor sediment. The values of energy consumption from the large scale tests showed that efficient decrease of pollutant concentrations and sustainable remediation could be achieved with moderate energy costs. Obtained results also indicated that better removals of Cr, PAHs and PCBs were achieved with the large-scale device using less energy and additives. However, the distribution of the pollutants in the specimen after the EK remediation indicated that the electric field did not totally control the migration process and that the interaction with likely heterogeneity and inertial effects reduced the EK effectiveness at the large scale. This scaling-up investigation allows considering EK tests at a larger scale (field installation) with adjusted parameters from a small-scale investigation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrokinetic remediation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale-up</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sediment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PAHs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PCBs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ammami, M.T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Portet-Koltalo, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Electrochimica acta</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1959</subfield><subfield code="g">352</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300897561</subfield><subfield code="w">(DE-600)1483548-4</subfield><subfield code="w">(DE-576)094752451</subfield><subfield code="x">1873-3859</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:352</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">352</subfield></datafield></record></collection>
|
score |
7.40121 |