A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing
For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(...
Ausführliche Beschreibung
Autor*in: |
Hou, Yue [verfasserIn] Li, Yue [verfasserIn] Zhang, Mengyao [verfasserIn] Zhang, Xunxue [verfasserIn] Xu, Zhenzhen [verfasserIn] Li, Yaping [verfasserIn] Duan, Yuai [verfasserIn] Han, Tianyu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Dyes and pigments - Amsterdam [u.a.] : Elsevier Science, 1980, 180 |
---|---|
Übergeordnetes Werk: |
volume:180 |
DOI / URN: |
10.1016/j.dyepig.2020.108505 |
---|
Katalog-ID: |
ELV004268466 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004268466 | ||
003 | DE-627 | ||
005 | 20230524145504.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.dyepig.2020.108505 |2 doi | |
035 | |a (DE-627)ELV004268466 | ||
035 | |a (ELSEVIER)S0143-7208(19)32963-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 58.26 |2 bkl | ||
100 | 1 | |a Hou, Yue |e verfasserin |4 aut | |
245 | 1 | 0 | |a A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (CDBTA), functioning based on dihedral-angle change, was reported. The initial state of CDBTA glows green emission (520 nm), while grinding changes its colour into yellow-orange (551 nm). The switching between two emission states can be stably switched with high fatigue resistance. The underlying MCL mechanism was verified by crystal analyses on two forms of single crystal, namely Green-form (G-form) and Yellow-form (Y-form), respectively. Molecules in G-form crystal adopt the twisted conformation by the rotation of the donor-acceptor (D-A) biplane. The dihedral angle is thus fixed by a variety of intermolecular interactions. Under mechanical stimuli, these interactions are destructed and the intramolecular torsional stress is released. Thus the molecules cannot maintain twisted conformation but form D-A coplane similar to the Y-form. Such dihedral-angle-controlled structural relaxation makes the π-electron highly delocalized to facilitate bathochromic-shift. The MCL stems from the changes of dihedral angle of the D-A biplane rather than that in packing mode or phase state, therefore CDBTA offers the possibility to fully activate the MCL performances when instrumented. Encouraged by this advantage, a CDBTA film sensor for pressure detection was fabricated, which exhibits a gradual red-shift with pressure and low detection limit down to 15.21 MPa. | ||
650 | 4 | |a Mechanochromic fluorescence | |
650 | 4 | |a Aggregation-induced emission | |
650 | 4 | |a Dihedral-angle | |
650 | 4 | |a Pressure sensing | |
700 | 1 | |a Li, Yue |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Mengyao |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Xunxue |e verfasserin |4 aut | |
700 | 1 | |a Xu, Zhenzhen |e verfasserin |4 aut | |
700 | 1 | |a Li, Yaping |e verfasserin |4 aut | |
700 | 1 | |a Duan, Yuai |e verfasserin |4 aut | |
700 | 1 | |a Han, Tianyu |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Dyes and pigments |d Amsterdam [u.a.] : Elsevier Science, 1980 |g 180 |h Online-Ressource |w (DE-627)306658755 |w (DE-600)1500382-6 |w (DE-576)116550910 |x 0143-7208 |7 nnns |
773 | 1 | 8 | |g volume:180 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.26 |j Technologie der Farben und Lacke |
951 | |a AR | ||
952 | |d 180 |
author_variant |
y h yh y l yl m z mz x z xz z x zx y l yl y d yd t h th |
---|---|
matchkey_str |
article:01437208:2020----::dhdaageotoldehncrmcuiecnmtraapi |
hierarchy_sort_str |
2020 |
bklnumber |
58.26 |
publishDate |
2020 |
allfields |
10.1016/j.dyepig.2020.108505 doi (DE-627)ELV004268466 (ELSEVIER)S0143-7208(19)32963-8 DE-627 ger DE-627 rda eng 660 DE-600 58.26 bkl Hou, Yue verfasserin aut A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (CDBTA), functioning based on dihedral-angle change, was reported. The initial state of CDBTA glows green emission (520 nm), while grinding changes its colour into yellow-orange (551 nm). The switching between two emission states can be stably switched with high fatigue resistance. The underlying MCL mechanism was verified by crystal analyses on two forms of single crystal, namely Green-form (G-form) and Yellow-form (Y-form), respectively. Molecules in G-form crystal adopt the twisted conformation by the rotation of the donor-acceptor (D-A) biplane. The dihedral angle is thus fixed by a variety of intermolecular interactions. Under mechanical stimuli, these interactions are destructed and the intramolecular torsional stress is released. Thus the molecules cannot maintain twisted conformation but form D-A coplane similar to the Y-form. Such dihedral-angle-controlled structural relaxation makes the π-electron highly delocalized to facilitate bathochromic-shift. The MCL stems from the changes of dihedral angle of the D-A biplane rather than that in packing mode or phase state, therefore CDBTA offers the possibility to fully activate the MCL performances when instrumented. Encouraged by this advantage, a CDBTA film sensor for pressure detection was fabricated, which exhibits a gradual red-shift with pressure and low detection limit down to 15.21 MPa. Mechanochromic fluorescence Aggregation-induced emission Dihedral-angle Pressure sensing Li, Yue verfasserin aut Zhang, Mengyao verfasserin aut Zhang, Xunxue verfasserin aut Xu, Zhenzhen verfasserin aut Li, Yaping verfasserin aut Duan, Yuai verfasserin aut Han, Tianyu verfasserin aut Enthalten in Dyes and pigments Amsterdam [u.a.] : Elsevier Science, 1980 180 Online-Ressource (DE-627)306658755 (DE-600)1500382-6 (DE-576)116550910 0143-7208 nnns volume:180 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.26 Technologie der Farben und Lacke AR 180 |
spelling |
10.1016/j.dyepig.2020.108505 doi (DE-627)ELV004268466 (ELSEVIER)S0143-7208(19)32963-8 DE-627 ger DE-627 rda eng 660 DE-600 58.26 bkl Hou, Yue verfasserin aut A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (CDBTA), functioning based on dihedral-angle change, was reported. The initial state of CDBTA glows green emission (520 nm), while grinding changes its colour into yellow-orange (551 nm). The switching between two emission states can be stably switched with high fatigue resistance. The underlying MCL mechanism was verified by crystal analyses on two forms of single crystal, namely Green-form (G-form) and Yellow-form (Y-form), respectively. Molecules in G-form crystal adopt the twisted conformation by the rotation of the donor-acceptor (D-A) biplane. The dihedral angle is thus fixed by a variety of intermolecular interactions. Under mechanical stimuli, these interactions are destructed and the intramolecular torsional stress is released. Thus the molecules cannot maintain twisted conformation but form D-A coplane similar to the Y-form. Such dihedral-angle-controlled structural relaxation makes the π-electron highly delocalized to facilitate bathochromic-shift. The MCL stems from the changes of dihedral angle of the D-A biplane rather than that in packing mode or phase state, therefore CDBTA offers the possibility to fully activate the MCL performances when instrumented. Encouraged by this advantage, a CDBTA film sensor for pressure detection was fabricated, which exhibits a gradual red-shift with pressure and low detection limit down to 15.21 MPa. Mechanochromic fluorescence Aggregation-induced emission Dihedral-angle Pressure sensing Li, Yue verfasserin aut Zhang, Mengyao verfasserin aut Zhang, Xunxue verfasserin aut Xu, Zhenzhen verfasserin aut Li, Yaping verfasserin aut Duan, Yuai verfasserin aut Han, Tianyu verfasserin aut Enthalten in Dyes and pigments Amsterdam [u.a.] : Elsevier Science, 1980 180 Online-Ressource (DE-627)306658755 (DE-600)1500382-6 (DE-576)116550910 0143-7208 nnns volume:180 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.26 Technologie der Farben und Lacke AR 180 |
allfields_unstemmed |
10.1016/j.dyepig.2020.108505 doi (DE-627)ELV004268466 (ELSEVIER)S0143-7208(19)32963-8 DE-627 ger DE-627 rda eng 660 DE-600 58.26 bkl Hou, Yue verfasserin aut A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (CDBTA), functioning based on dihedral-angle change, was reported. The initial state of CDBTA glows green emission (520 nm), while grinding changes its colour into yellow-orange (551 nm). The switching between two emission states can be stably switched with high fatigue resistance. The underlying MCL mechanism was verified by crystal analyses on two forms of single crystal, namely Green-form (G-form) and Yellow-form (Y-form), respectively. Molecules in G-form crystal adopt the twisted conformation by the rotation of the donor-acceptor (D-A) biplane. The dihedral angle is thus fixed by a variety of intermolecular interactions. Under mechanical stimuli, these interactions are destructed and the intramolecular torsional stress is released. Thus the molecules cannot maintain twisted conformation but form D-A coplane similar to the Y-form. Such dihedral-angle-controlled structural relaxation makes the π-electron highly delocalized to facilitate bathochromic-shift. The MCL stems from the changes of dihedral angle of the D-A biplane rather than that in packing mode or phase state, therefore CDBTA offers the possibility to fully activate the MCL performances when instrumented. Encouraged by this advantage, a CDBTA film sensor for pressure detection was fabricated, which exhibits a gradual red-shift with pressure and low detection limit down to 15.21 MPa. Mechanochromic fluorescence Aggregation-induced emission Dihedral-angle Pressure sensing Li, Yue verfasserin aut Zhang, Mengyao verfasserin aut Zhang, Xunxue verfasserin aut Xu, Zhenzhen verfasserin aut Li, Yaping verfasserin aut Duan, Yuai verfasserin aut Han, Tianyu verfasserin aut Enthalten in Dyes and pigments Amsterdam [u.a.] : Elsevier Science, 1980 180 Online-Ressource (DE-627)306658755 (DE-600)1500382-6 (DE-576)116550910 0143-7208 nnns volume:180 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.26 Technologie der Farben und Lacke AR 180 |
allfieldsGer |
10.1016/j.dyepig.2020.108505 doi (DE-627)ELV004268466 (ELSEVIER)S0143-7208(19)32963-8 DE-627 ger DE-627 rda eng 660 DE-600 58.26 bkl Hou, Yue verfasserin aut A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (CDBTA), functioning based on dihedral-angle change, was reported. The initial state of CDBTA glows green emission (520 nm), while grinding changes its colour into yellow-orange (551 nm). The switching between two emission states can be stably switched with high fatigue resistance. The underlying MCL mechanism was verified by crystal analyses on two forms of single crystal, namely Green-form (G-form) and Yellow-form (Y-form), respectively. Molecules in G-form crystal adopt the twisted conformation by the rotation of the donor-acceptor (D-A) biplane. The dihedral angle is thus fixed by a variety of intermolecular interactions. Under mechanical stimuli, these interactions are destructed and the intramolecular torsional stress is released. Thus the molecules cannot maintain twisted conformation but form D-A coplane similar to the Y-form. Such dihedral-angle-controlled structural relaxation makes the π-electron highly delocalized to facilitate bathochromic-shift. The MCL stems from the changes of dihedral angle of the D-A biplane rather than that in packing mode or phase state, therefore CDBTA offers the possibility to fully activate the MCL performances when instrumented. Encouraged by this advantage, a CDBTA film sensor for pressure detection was fabricated, which exhibits a gradual red-shift with pressure and low detection limit down to 15.21 MPa. Mechanochromic fluorescence Aggregation-induced emission Dihedral-angle Pressure sensing Li, Yue verfasserin aut Zhang, Mengyao verfasserin aut Zhang, Xunxue verfasserin aut Xu, Zhenzhen verfasserin aut Li, Yaping verfasserin aut Duan, Yuai verfasserin aut Han, Tianyu verfasserin aut Enthalten in Dyes and pigments Amsterdam [u.a.] : Elsevier Science, 1980 180 Online-Ressource (DE-627)306658755 (DE-600)1500382-6 (DE-576)116550910 0143-7208 nnns volume:180 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.26 Technologie der Farben und Lacke AR 180 |
allfieldsSound |
10.1016/j.dyepig.2020.108505 doi (DE-627)ELV004268466 (ELSEVIER)S0143-7208(19)32963-8 DE-627 ger DE-627 rda eng 660 DE-600 58.26 bkl Hou, Yue verfasserin aut A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (CDBTA), functioning based on dihedral-angle change, was reported. The initial state of CDBTA glows green emission (520 nm), while grinding changes its colour into yellow-orange (551 nm). The switching between two emission states can be stably switched with high fatigue resistance. The underlying MCL mechanism was verified by crystal analyses on two forms of single crystal, namely Green-form (G-form) and Yellow-form (Y-form), respectively. Molecules in G-form crystal adopt the twisted conformation by the rotation of the donor-acceptor (D-A) biplane. The dihedral angle is thus fixed by a variety of intermolecular interactions. Under mechanical stimuli, these interactions are destructed and the intramolecular torsional stress is released. Thus the molecules cannot maintain twisted conformation but form D-A coplane similar to the Y-form. Such dihedral-angle-controlled structural relaxation makes the π-electron highly delocalized to facilitate bathochromic-shift. The MCL stems from the changes of dihedral angle of the D-A biplane rather than that in packing mode or phase state, therefore CDBTA offers the possibility to fully activate the MCL performances when instrumented. Encouraged by this advantage, a CDBTA film sensor for pressure detection was fabricated, which exhibits a gradual red-shift with pressure and low detection limit down to 15.21 MPa. Mechanochromic fluorescence Aggregation-induced emission Dihedral-angle Pressure sensing Li, Yue verfasserin aut Zhang, Mengyao verfasserin aut Zhang, Xunxue verfasserin aut Xu, Zhenzhen verfasserin aut Li, Yaping verfasserin aut Duan, Yuai verfasserin aut Han, Tianyu verfasserin aut Enthalten in Dyes and pigments Amsterdam [u.a.] : Elsevier Science, 1980 180 Online-Ressource (DE-627)306658755 (DE-600)1500382-6 (DE-576)116550910 0143-7208 nnns volume:180 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.26 Technologie der Farben und Lacke AR 180 |
language |
English |
source |
Enthalten in Dyes and pigments 180 volume:180 |
sourceStr |
Enthalten in Dyes and pigments 180 volume:180 |
format_phy_str_mv |
Article |
bklname |
Technologie der Farben und Lacke |
institution |
findex.gbv.de |
topic_facet |
Mechanochromic fluorescence Aggregation-induced emission Dihedral-angle Pressure sensing |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Dyes and pigments |
authorswithroles_txt_mv |
Hou, Yue @@aut@@ Li, Yue @@aut@@ Zhang, Mengyao @@aut@@ Zhang, Xunxue @@aut@@ Xu, Zhenzhen @@aut@@ Li, Yaping @@aut@@ Duan, Yuai @@aut@@ Han, Tianyu @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306658755 |
dewey-sort |
3660 |
id |
ELV004268466 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004268466</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145504.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dyepig.2020.108505</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004268466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-7208(19)32963-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.26</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hou, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (CDBTA), functioning based on dihedral-angle change, was reported. The initial state of CDBTA glows green emission (520 nm), while grinding changes its colour into yellow-orange (551 nm). The switching between two emission states can be stably switched with high fatigue resistance. The underlying MCL mechanism was verified by crystal analyses on two forms of single crystal, namely Green-form (G-form) and Yellow-form (Y-form), respectively. Molecules in G-form crystal adopt the twisted conformation by the rotation of the donor-acceptor (D-A) biplane. The dihedral angle is thus fixed by a variety of intermolecular interactions. Under mechanical stimuli, these interactions are destructed and the intramolecular torsional stress is released. Thus the molecules cannot maintain twisted conformation but form D-A coplane similar to the Y-form. Such dihedral-angle-controlled structural relaxation makes the π-electron highly delocalized to facilitate bathochromic-shift. The MCL stems from the changes of dihedral angle of the D-A biplane rather than that in packing mode or phase state, therefore CDBTA offers the possibility to fully activate the MCL performances when instrumented. Encouraged by this advantage, a CDBTA film sensor for pressure detection was fabricated, which exhibits a gradual red-shift with pressure and low detection limit down to 15.21 MPa.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanochromic fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aggregation-induced emission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dihedral-angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure sensing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Mengyao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xunxue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Zhenzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yaping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Yuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Tianyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Dyes and pigments</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">180</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306658755</subfield><subfield code="w">(DE-600)1500382-6</subfield><subfield code="w">(DE-576)116550910</subfield><subfield code="x">0143-7208</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:180</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.26</subfield><subfield code="j">Technologie der Farben und Lacke</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">180</subfield></datafield></record></collection>
|
author |
Hou, Yue |
spellingShingle |
Hou, Yue ddc 660 bkl 58.26 misc Mechanochromic fluorescence misc Aggregation-induced emission misc Dihedral-angle misc Pressure sensing A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing |
authorStr |
Hou, Yue |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306658755 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0143-7208 |
topic_title |
660 DE-600 58.26 bkl A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing Mechanochromic fluorescence Aggregation-induced emission Dihedral-angle Pressure sensing |
topic |
ddc 660 bkl 58.26 misc Mechanochromic fluorescence misc Aggregation-induced emission misc Dihedral-angle misc Pressure sensing |
topic_unstemmed |
ddc 660 bkl 58.26 misc Mechanochromic fluorescence misc Aggregation-induced emission misc Dihedral-angle misc Pressure sensing |
topic_browse |
ddc 660 bkl 58.26 misc Mechanochromic fluorescence misc Aggregation-induced emission misc Dihedral-angle misc Pressure sensing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Dyes and pigments |
hierarchy_parent_id |
306658755 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Dyes and pigments |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306658755 (DE-600)1500382-6 (DE-576)116550910 |
title |
A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing |
ctrlnum |
(DE-627)ELV004268466 (ELSEVIER)S0143-7208(19)32963-8 |
title_full |
A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing |
author_sort |
Hou, Yue |
journal |
Dyes and pigments |
journalStr |
Dyes and pigments |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Hou, Yue Li, Yue Zhang, Mengyao Zhang, Xunxue Xu, Zhenzhen Li, Yaping Duan, Yuai Han, Tianyu |
container_volume |
180 |
class |
660 DE-600 58.26 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hou, Yue |
doi_str_mv |
10.1016/j.dyepig.2020.108505 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
a dihedral-angle-controlled mechanochromic luminescent material: application for pressure sensing |
title_auth |
A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing |
abstract |
For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (CDBTA), functioning based on dihedral-angle change, was reported. The initial state of CDBTA glows green emission (520 nm), while grinding changes its colour into yellow-orange (551 nm). The switching between two emission states can be stably switched with high fatigue resistance. The underlying MCL mechanism was verified by crystal analyses on two forms of single crystal, namely Green-form (G-form) and Yellow-form (Y-form), respectively. Molecules in G-form crystal adopt the twisted conformation by the rotation of the donor-acceptor (D-A) biplane. The dihedral angle is thus fixed by a variety of intermolecular interactions. Under mechanical stimuli, these interactions are destructed and the intramolecular torsional stress is released. Thus the molecules cannot maintain twisted conformation but form D-A coplane similar to the Y-form. Such dihedral-angle-controlled structural relaxation makes the π-electron highly delocalized to facilitate bathochromic-shift. The MCL stems from the changes of dihedral angle of the D-A biplane rather than that in packing mode or phase state, therefore CDBTA offers the possibility to fully activate the MCL performances when instrumented. Encouraged by this advantage, a CDBTA film sensor for pressure detection was fabricated, which exhibits a gradual red-shift with pressure and low detection limit down to 15.21 MPa. |
abstractGer |
For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (CDBTA), functioning based on dihedral-angle change, was reported. The initial state of CDBTA glows green emission (520 nm), while grinding changes its colour into yellow-orange (551 nm). The switching between two emission states can be stably switched with high fatigue resistance. The underlying MCL mechanism was verified by crystal analyses on two forms of single crystal, namely Green-form (G-form) and Yellow-form (Y-form), respectively. Molecules in G-form crystal adopt the twisted conformation by the rotation of the donor-acceptor (D-A) biplane. The dihedral angle is thus fixed by a variety of intermolecular interactions. Under mechanical stimuli, these interactions are destructed and the intramolecular torsional stress is released. Thus the molecules cannot maintain twisted conformation but form D-A coplane similar to the Y-form. Such dihedral-angle-controlled structural relaxation makes the π-electron highly delocalized to facilitate bathochromic-shift. The MCL stems from the changes of dihedral angle of the D-A biplane rather than that in packing mode or phase state, therefore CDBTA offers the possibility to fully activate the MCL performances when instrumented. Encouraged by this advantage, a CDBTA film sensor for pressure detection was fabricated, which exhibits a gradual red-shift with pressure and low detection limit down to 15.21 MPa. |
abstract_unstemmed |
For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (CDBTA), functioning based on dihedral-angle change, was reported. The initial state of CDBTA glows green emission (520 nm), while grinding changes its colour into yellow-orange (551 nm). The switching between two emission states can be stably switched with high fatigue resistance. The underlying MCL mechanism was verified by crystal analyses on two forms of single crystal, namely Green-form (G-form) and Yellow-form (Y-form), respectively. Molecules in G-form crystal adopt the twisted conformation by the rotation of the donor-acceptor (D-A) biplane. The dihedral angle is thus fixed by a variety of intermolecular interactions. Under mechanical stimuli, these interactions are destructed and the intramolecular torsional stress is released. Thus the molecules cannot maintain twisted conformation but form D-A coplane similar to the Y-form. Such dihedral-angle-controlled structural relaxation makes the π-electron highly delocalized to facilitate bathochromic-shift. The MCL stems from the changes of dihedral angle of the D-A biplane rather than that in packing mode or phase state, therefore CDBTA offers the possibility to fully activate the MCL performances when instrumented. Encouraged by this advantage, a CDBTA film sensor for pressure detection was fabricated, which exhibits a gradual red-shift with pressure and low detection limit down to 15.21 MPa. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing |
remote_bool |
true |
author2 |
Li, Yue Zhang, Mengyao Zhang, Xunxue Xu, Zhenzhen Li, Yaping Duan, Yuai Han, Tianyu |
author2Str |
Li, Yue Zhang, Mengyao Zhang, Xunxue Xu, Zhenzhen Li, Yaping Duan, Yuai Han, Tianyu |
ppnlink |
306658755 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.dyepig.2020.108505 |
up_date |
2024-07-06T22:25:17.657Z |
_version_ |
1803870239624003584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004268466</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145504.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dyepig.2020.108505</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004268466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-7208(19)32963-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.26</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hou, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A dihedral-angle-controlled mechanochromic luminescent material: Application for pressure sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For most of the mechanochromic luminescent (MCL) materials, their mechanisms are based on the phase transition. When they are fabricated into devices or films, the MCL cannot be fully activated due to uncontrollable phase state of the materials. In this study, a new MCL material, (E)-6-chloro-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (CDBTA), functioning based on dihedral-angle change, was reported. The initial state of CDBTA glows green emission (520 nm), while grinding changes its colour into yellow-orange (551 nm). The switching between two emission states can be stably switched with high fatigue resistance. The underlying MCL mechanism was verified by crystal analyses on two forms of single crystal, namely Green-form (G-form) and Yellow-form (Y-form), respectively. Molecules in G-form crystal adopt the twisted conformation by the rotation of the donor-acceptor (D-A) biplane. The dihedral angle is thus fixed by a variety of intermolecular interactions. Under mechanical stimuli, these interactions are destructed and the intramolecular torsional stress is released. Thus the molecules cannot maintain twisted conformation but form D-A coplane similar to the Y-form. Such dihedral-angle-controlled structural relaxation makes the π-electron highly delocalized to facilitate bathochromic-shift. The MCL stems from the changes of dihedral angle of the D-A biplane rather than that in packing mode or phase state, therefore CDBTA offers the possibility to fully activate the MCL performances when instrumented. Encouraged by this advantage, a CDBTA film sensor for pressure detection was fabricated, which exhibits a gradual red-shift with pressure and low detection limit down to 15.21 MPa.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanochromic fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aggregation-induced emission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dihedral-angle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure sensing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Mengyao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xunxue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Zhenzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yaping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Yuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Tianyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Dyes and pigments</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">180</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306658755</subfield><subfield code="w">(DE-600)1500382-6</subfield><subfield code="w">(DE-576)116550910</subfield><subfield code="x">0143-7208</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:180</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.26</subfield><subfield code="j">Technologie der Farben und Lacke</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">180</subfield></datafield></record></collection>
|
score |
7.400936 |