A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities
A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to...
Ausführliche Beschreibung
Autor*in: |
Johnson, Evan [verfasserIn] Tarı, İlker [verfasserIn] Baker, Derek [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
Radiative effective thermal conductivity |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of quantitative spectroscopy & radiative transfer - New York, NY [u.a.] : Elsevier, 1961, 250 |
---|---|
Übergeordnetes Werk: |
volume:250 |
DOI / URN: |
10.1016/j.jqsrt.2020.107014 |
---|
Katalog-ID: |
ELV00427704X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00427704X | ||
003 | DE-627 | ||
005 | 20230524155822.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jqsrt.2020.107014 |2 doi | |
035 | |a (DE-627)ELV00427704X | ||
035 | |a (ELSEVIER)S0022-4073(20)30101-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Johnson, Evan |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive krad . In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and krad is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (FE ), allowing krad to be calculated at any temperature and particle radius. The key result is a model for FE over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. FE results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The krad results are combined with the Zehner and Schlünder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity. | ||
650 | 4 | |a Radiative effective thermal conductivity | |
650 | 4 | |a Monte Carlo | |
650 | 4 | |a Particle-particle radiation | |
650 | 4 | |a Heat transfer in particle beds | |
650 | 4 | |a Radiation between spheres | |
650 | 4 | |a Radiative exchange factor | |
700 | 1 | |a Tarı, İlker |e verfasserin |4 aut | |
700 | 1 | |a Baker, Derek |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of quantitative spectroscopy & radiative transfer |d New York, NY [u.a.] : Elsevier, 1961 |g 250 |h Online-Ressource |w (DE-627)302718931 |w (DE-600)1491916-3 |w (DE-576)255266650 |x 1879-1352 |7 nnns |
773 | 1 | 8 | |g volume:250 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.00 |j Physik: Allgemeines |
951 | |a AR | ||
952 | |d 250 |
author_variant |
e j ej i t it d b db |
---|---|
matchkey_str |
article:18791352:2020----::mnealmtotsleordaiefetvtemlodciiyoprilbdovro |
hierarchy_sort_str |
2020 |
bklnumber |
33.00 |
publishDate |
2020 |
allfields |
10.1016/j.jqsrt.2020.107014 doi (DE-627)ELV00427704X (ELSEVIER)S0022-4073(20)30101-1 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Johnson, Evan verfasserin aut A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive krad . In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and krad is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (FE ), allowing krad to be calculated at any temperature and particle radius. The key result is a model for FE over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. FE results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The krad results are combined with the Zehner and Schlünder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity. Radiative effective thermal conductivity Monte Carlo Particle-particle radiation Heat transfer in particle beds Radiation between spheres Radiative exchange factor Tarı, İlker verfasserin aut Baker, Derek verfasserin aut Enthalten in Journal of quantitative spectroscopy & radiative transfer New York, NY [u.a.] : Elsevier, 1961 250 Online-Ressource (DE-627)302718931 (DE-600)1491916-3 (DE-576)255266650 1879-1352 nnns volume:250 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 250 |
spelling |
10.1016/j.jqsrt.2020.107014 doi (DE-627)ELV00427704X (ELSEVIER)S0022-4073(20)30101-1 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Johnson, Evan verfasserin aut A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive krad . In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and krad is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (FE ), allowing krad to be calculated at any temperature and particle radius. The key result is a model for FE over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. FE results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The krad results are combined with the Zehner and Schlünder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity. Radiative effective thermal conductivity Monte Carlo Particle-particle radiation Heat transfer in particle beds Radiation between spheres Radiative exchange factor Tarı, İlker verfasserin aut Baker, Derek verfasserin aut Enthalten in Journal of quantitative spectroscopy & radiative transfer New York, NY [u.a.] : Elsevier, 1961 250 Online-Ressource (DE-627)302718931 (DE-600)1491916-3 (DE-576)255266650 1879-1352 nnns volume:250 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 250 |
allfields_unstemmed |
10.1016/j.jqsrt.2020.107014 doi (DE-627)ELV00427704X (ELSEVIER)S0022-4073(20)30101-1 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Johnson, Evan verfasserin aut A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive krad . In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and krad is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (FE ), allowing krad to be calculated at any temperature and particle radius. The key result is a model for FE over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. FE results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The krad results are combined with the Zehner and Schlünder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity. Radiative effective thermal conductivity Monte Carlo Particle-particle radiation Heat transfer in particle beds Radiation between spheres Radiative exchange factor Tarı, İlker verfasserin aut Baker, Derek verfasserin aut Enthalten in Journal of quantitative spectroscopy & radiative transfer New York, NY [u.a.] : Elsevier, 1961 250 Online-Ressource (DE-627)302718931 (DE-600)1491916-3 (DE-576)255266650 1879-1352 nnns volume:250 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 250 |
allfieldsGer |
10.1016/j.jqsrt.2020.107014 doi (DE-627)ELV00427704X (ELSEVIER)S0022-4073(20)30101-1 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Johnson, Evan verfasserin aut A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive krad . In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and krad is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (FE ), allowing krad to be calculated at any temperature and particle radius. The key result is a model for FE over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. FE results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The krad results are combined with the Zehner and Schlünder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity. Radiative effective thermal conductivity Monte Carlo Particle-particle radiation Heat transfer in particle beds Radiation between spheres Radiative exchange factor Tarı, İlker verfasserin aut Baker, Derek verfasserin aut Enthalten in Journal of quantitative spectroscopy & radiative transfer New York, NY [u.a.] : Elsevier, 1961 250 Online-Ressource (DE-627)302718931 (DE-600)1491916-3 (DE-576)255266650 1879-1352 nnns volume:250 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 250 |
allfieldsSound |
10.1016/j.jqsrt.2020.107014 doi (DE-627)ELV00427704X (ELSEVIER)S0022-4073(20)30101-1 DE-627 ger DE-627 rda eng 530 DE-600 33.00 bkl Johnson, Evan verfasserin aut A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive krad . In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and krad is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (FE ), allowing krad to be calculated at any temperature and particle radius. The key result is a model for FE over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. FE results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The krad results are combined with the Zehner and Schlünder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity. Radiative effective thermal conductivity Monte Carlo Particle-particle radiation Heat transfer in particle beds Radiation between spheres Radiative exchange factor Tarı, İlker verfasserin aut Baker, Derek verfasserin aut Enthalten in Journal of quantitative spectroscopy & radiative transfer New York, NY [u.a.] : Elsevier, 1961 250 Online-Ressource (DE-627)302718931 (DE-600)1491916-3 (DE-576)255266650 1879-1352 nnns volume:250 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.00 Physik: Allgemeines AR 250 |
language |
English |
source |
Enthalten in Journal of quantitative spectroscopy & radiative transfer 250 volume:250 |
sourceStr |
Enthalten in Journal of quantitative spectroscopy & radiative transfer 250 volume:250 |
format_phy_str_mv |
Article |
bklname |
Physik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Radiative effective thermal conductivity Monte Carlo Particle-particle radiation Heat transfer in particle beds Radiation between spheres Radiative exchange factor |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of quantitative spectroscopy & radiative transfer |
authorswithroles_txt_mv |
Johnson, Evan @@aut@@ Tarı, İlker @@aut@@ Baker, Derek @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
302718931 |
dewey-sort |
3530 |
id |
ELV00427704X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00427704X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jqsrt.2020.107014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00427704X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-4073(20)30101-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, Evan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive krad . In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and krad is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (FE ), allowing krad to be calculated at any temperature and particle radius. The key result is a model for FE over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. FE results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The krad results are combined with the Zehner and Schlünder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiative effective thermal conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle-particle radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer in particle beds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation between spheres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiative exchange factor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tarı, İlker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baker, Derek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of quantitative spectroscopy & radiative transfer</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1961</subfield><subfield code="g">250</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302718931</subfield><subfield code="w">(DE-600)1491916-3</subfield><subfield code="w">(DE-576)255266650</subfield><subfield code="x">1879-1352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">250</subfield></datafield></record></collection>
|
author |
Johnson, Evan |
spellingShingle |
Johnson, Evan ddc 530 bkl 33.00 misc Radiative effective thermal conductivity misc Monte Carlo misc Particle-particle radiation misc Heat transfer in particle beds misc Radiation between spheres misc Radiative exchange factor A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities |
authorStr |
Johnson, Evan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302718931 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-1352 |
topic_title |
530 DE-600 33.00 bkl A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities Radiative effective thermal conductivity Monte Carlo Particle-particle radiation Heat transfer in particle beds Radiation between spheres Radiative exchange factor |
topic |
ddc 530 bkl 33.00 misc Radiative effective thermal conductivity misc Monte Carlo misc Particle-particle radiation misc Heat transfer in particle beds misc Radiation between spheres misc Radiative exchange factor |
topic_unstemmed |
ddc 530 bkl 33.00 misc Radiative effective thermal conductivity misc Monte Carlo misc Particle-particle radiation misc Heat transfer in particle beds misc Radiation between spheres misc Radiative exchange factor |
topic_browse |
ddc 530 bkl 33.00 misc Radiative effective thermal conductivity misc Monte Carlo misc Particle-particle radiation misc Heat transfer in particle beds misc Radiation between spheres misc Radiative exchange factor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of quantitative spectroscopy & radiative transfer |
hierarchy_parent_id |
302718931 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of quantitative spectroscopy & radiative transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302718931 (DE-600)1491916-3 (DE-576)255266650 |
title |
A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities |
ctrlnum |
(DE-627)ELV00427704X (ELSEVIER)S0022-4073(20)30101-1 |
title_full |
A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities |
author_sort |
Johnson, Evan |
journal |
Journal of quantitative spectroscopy & radiative transfer |
journalStr |
Journal of quantitative spectroscopy & radiative transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Johnson, Evan Tarı, İlker Baker, Derek |
container_volume |
250 |
class |
530 DE-600 33.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Johnson, Evan |
doi_str_mv |
10.1016/j.jqsrt.2020.107014 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
a monte carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities |
title_auth |
A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities |
abstract |
A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive krad . In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and krad is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (FE ), allowing krad to be calculated at any temperature and particle radius. The key result is a model for FE over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. FE results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The krad results are combined with the Zehner and Schlünder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity. |
abstractGer |
A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive krad . In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and krad is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (FE ), allowing krad to be calculated at any temperature and particle radius. The key result is a model for FE over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. FE results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The krad results are combined with the Zehner and Schlünder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity. |
abstract_unstemmed |
A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive krad . In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and krad is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (FE ), allowing krad to be calculated at any temperature and particle radius. The key result is a model for FE over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. FE results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The krad results are combined with the Zehner and Schlünder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities |
remote_bool |
true |
author2 |
Tarı, İlker Baker, Derek |
author2Str |
Tarı, İlker Baker, Derek |
ppnlink |
302718931 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jqsrt.2020.107014 |
up_date |
2024-07-06T22:27:03.704Z |
_version_ |
1803870350822342656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00427704X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jqsrt.2020.107014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00427704X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-4073(20)30101-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, Evan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A method is described to find the effective thermal conductivity due to radiation (krad ) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive krad . In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and krad is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (FE ), allowing krad to be calculated at any temperature and particle radius. The key result is a model for FE over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. FE results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The krad results are combined with the Zehner and Schlünder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiative effective thermal conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle-particle radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer in particle beds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation between spheres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiative exchange factor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tarı, İlker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baker, Derek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of quantitative spectroscopy & radiative transfer</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1961</subfield><subfield code="g">250</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302718931</subfield><subfield code="w">(DE-600)1491916-3</subfield><subfield code="w">(DE-576)255266650</subfield><subfield code="x">1879-1352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">250</subfield></datafield></record></collection>
|
score |
7.3995247 |