Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure
Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be eas...
Ausführliche Beschreibung
Autor*in: |
Blanquer, Ignacio [verfasserIn] Brasileiro, Francisco [verfasserIn] Brito, Andrey [verfasserIn] Calatrava, Amanda [verfasserIn] Carvalho, André [verfasserIn] Fetzer, Christof [verfasserIn] Figueiredo, Flavio [verfasserIn] Guimarães, Ronny Petterson [verfasserIn] Marinho, Leandro [verfasserIn] Meira, Wagner [verfasserIn] Silva, Altigran [verfasserIn] Alberich-Bayarri, Ángel [verfasserIn] Camacho-Ramos, Eduardo [verfasserIn] Jimenez-Pastor, Ana [verfasserIn] Ribeiro, Antonio Luiz L. [verfasserIn] Nascimento, Bruno Ramos [verfasserIn] Silva, Fábio [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Future generation computer systems - Amsterdam [u.a.] : Elsevier Science, 1984, 110, Seite 119-134 |
---|---|
Übergeordnetes Werk: |
volume:110 ; pages:119-134 |
DOI / URN: |
10.1016/j.future.2020.04.012 |
---|
Katalog-ID: |
ELV00427895X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00427895X | ||
003 | DE-627 | ||
005 | 20230524160023.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.future.2020.04.012 |2 doi | |
035 | |a (DE-627)ELV00427895X | ||
035 | |a (ELSEVIER)S0167-739X(19)31804-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Blanquer, Ignacio |e verfasserin |4 aut | |
245 | 1 | 0 | |a Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be easily found on public cloud infrastructures or research centers. Nevertheless, the sensitivity of medical data poses several challenges on the access to such data, requiring security guarantees and isolation. In this paper we present an architecture that addresses this problem. It keeps critical data encrypted in memory and disk, which can only be accessed inside trusted execution environments protected by hardware extensions. Data is anonymized inside these environments and securely transferred to external sites that host accelerator devices, keeping the same network space and reducing security risks even in untrusted cloud backends. Results on the processing of data in different scenarios are presented and discussed. The results are demonstrated on a geographically-wide deployment provided by the ATMOSPHERE project. | ||
650 | 4 | |a Trustworthy cloud services | |
650 | 4 | |a Federated clouds | |
650 | 4 | |a Medical imaging | |
700 | 1 | |a Brasileiro, Francisco |e verfasserin |4 aut | |
700 | 1 | |a Brito, Andrey |e verfasserin |4 aut | |
700 | 1 | |a Calatrava, Amanda |e verfasserin |4 aut | |
700 | 1 | |a Carvalho, André |e verfasserin |4 aut | |
700 | 1 | |a Fetzer, Christof |e verfasserin |4 aut | |
700 | 1 | |a Figueiredo, Flavio |e verfasserin |4 aut | |
700 | 1 | |a Guimarães, Ronny Petterson |e verfasserin |4 aut | |
700 | 1 | |a Marinho, Leandro |e verfasserin |4 aut | |
700 | 1 | |a Meira, Wagner |e verfasserin |4 aut | |
700 | 1 | |a Silva, Altigran |e verfasserin |4 aut | |
700 | 1 | |a Alberich-Bayarri, Ángel |e verfasserin |4 aut | |
700 | 1 | |a Camacho-Ramos, Eduardo |e verfasserin |4 aut | |
700 | 1 | |a Jimenez-Pastor, Ana |e verfasserin |4 aut | |
700 | 1 | |a Ribeiro, Antonio Luiz L. |e verfasserin |4 aut | |
700 | 1 | |a Nascimento, Bruno Ramos |e verfasserin |4 aut | |
700 | 1 | |a Silva, Fábio |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Future generation computer systems |d Amsterdam [u.a.] : Elsevier Science, 1984 |g 110, Seite 119-134 |h Online-Ressource |w (DE-627)320604284 |w (DE-600)2020551-X |w (DE-576)094399212 |x 0167-739X |7 nnns |
773 | 1 | 8 | |g volume:110 |g pages:119-134 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.00 |j Informatik: Allgemeines |
951 | |a AR | ||
952 | |d 110 |h 119-134 |
author_variant |
i b ib f b fb a b ab a c ac a c ac c f cf f f ff r p g rp rpg l m lm w m wm a s as á a b áab e c r ecr a j p ajp a l l r all allr b r n br brn f s fs |
---|---|
matchkey_str |
article:0167739X:2020----::eeaeadeuelusriefruligeiaiaelsiiroait |
hierarchy_sort_str |
2020 |
bklnumber |
54.00 |
publishDate |
2020 |
allfields |
10.1016/j.future.2020.04.012 doi (DE-627)ELV00427895X (ELSEVIER)S0167-739X(19)31804-7 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Blanquer, Ignacio verfasserin aut Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be easily found on public cloud infrastructures or research centers. Nevertheless, the sensitivity of medical data poses several challenges on the access to such data, requiring security guarantees and isolation. In this paper we present an architecture that addresses this problem. It keeps critical data encrypted in memory and disk, which can only be accessed inside trusted execution environments protected by hardware extensions. Data is anonymized inside these environments and securely transferred to external sites that host accelerator devices, keeping the same network space and reducing security risks even in untrusted cloud backends. Results on the processing of data in different scenarios are presented and discussed. The results are demonstrated on a geographically-wide deployment provided by the ATMOSPHERE project. Trustworthy cloud services Federated clouds Medical imaging Brasileiro, Francisco verfasserin aut Brito, Andrey verfasserin aut Calatrava, Amanda verfasserin aut Carvalho, André verfasserin aut Fetzer, Christof verfasserin aut Figueiredo, Flavio verfasserin aut Guimarães, Ronny Petterson verfasserin aut Marinho, Leandro verfasserin aut Meira, Wagner verfasserin aut Silva, Altigran verfasserin aut Alberich-Bayarri, Ángel verfasserin aut Camacho-Ramos, Eduardo verfasserin aut Jimenez-Pastor, Ana verfasserin aut Ribeiro, Antonio Luiz L. verfasserin aut Nascimento, Bruno Ramos verfasserin aut Silva, Fábio verfasserin aut Enthalten in Future generation computer systems Amsterdam [u.a.] : Elsevier Science, 1984 110, Seite 119-134 Online-Ressource (DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 0167-739X nnns volume:110 pages:119-134 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 110 119-134 |
spelling |
10.1016/j.future.2020.04.012 doi (DE-627)ELV00427895X (ELSEVIER)S0167-739X(19)31804-7 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Blanquer, Ignacio verfasserin aut Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be easily found on public cloud infrastructures or research centers. Nevertheless, the sensitivity of medical data poses several challenges on the access to such data, requiring security guarantees and isolation. In this paper we present an architecture that addresses this problem. It keeps critical data encrypted in memory and disk, which can only be accessed inside trusted execution environments protected by hardware extensions. Data is anonymized inside these environments and securely transferred to external sites that host accelerator devices, keeping the same network space and reducing security risks even in untrusted cloud backends. Results on the processing of data in different scenarios are presented and discussed. The results are demonstrated on a geographically-wide deployment provided by the ATMOSPHERE project. Trustworthy cloud services Federated clouds Medical imaging Brasileiro, Francisco verfasserin aut Brito, Andrey verfasserin aut Calatrava, Amanda verfasserin aut Carvalho, André verfasserin aut Fetzer, Christof verfasserin aut Figueiredo, Flavio verfasserin aut Guimarães, Ronny Petterson verfasserin aut Marinho, Leandro verfasserin aut Meira, Wagner verfasserin aut Silva, Altigran verfasserin aut Alberich-Bayarri, Ángel verfasserin aut Camacho-Ramos, Eduardo verfasserin aut Jimenez-Pastor, Ana verfasserin aut Ribeiro, Antonio Luiz L. verfasserin aut Nascimento, Bruno Ramos verfasserin aut Silva, Fábio verfasserin aut Enthalten in Future generation computer systems Amsterdam [u.a.] : Elsevier Science, 1984 110, Seite 119-134 Online-Ressource (DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 0167-739X nnns volume:110 pages:119-134 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 110 119-134 |
allfields_unstemmed |
10.1016/j.future.2020.04.012 doi (DE-627)ELV00427895X (ELSEVIER)S0167-739X(19)31804-7 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Blanquer, Ignacio verfasserin aut Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be easily found on public cloud infrastructures or research centers. Nevertheless, the sensitivity of medical data poses several challenges on the access to such data, requiring security guarantees and isolation. In this paper we present an architecture that addresses this problem. It keeps critical data encrypted in memory and disk, which can only be accessed inside trusted execution environments protected by hardware extensions. Data is anonymized inside these environments and securely transferred to external sites that host accelerator devices, keeping the same network space and reducing security risks even in untrusted cloud backends. Results on the processing of data in different scenarios are presented and discussed. The results are demonstrated on a geographically-wide deployment provided by the ATMOSPHERE project. Trustworthy cloud services Federated clouds Medical imaging Brasileiro, Francisco verfasserin aut Brito, Andrey verfasserin aut Calatrava, Amanda verfasserin aut Carvalho, André verfasserin aut Fetzer, Christof verfasserin aut Figueiredo, Flavio verfasserin aut Guimarães, Ronny Petterson verfasserin aut Marinho, Leandro verfasserin aut Meira, Wagner verfasserin aut Silva, Altigran verfasserin aut Alberich-Bayarri, Ángel verfasserin aut Camacho-Ramos, Eduardo verfasserin aut Jimenez-Pastor, Ana verfasserin aut Ribeiro, Antonio Luiz L. verfasserin aut Nascimento, Bruno Ramos verfasserin aut Silva, Fábio verfasserin aut Enthalten in Future generation computer systems Amsterdam [u.a.] : Elsevier Science, 1984 110, Seite 119-134 Online-Ressource (DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 0167-739X nnns volume:110 pages:119-134 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 110 119-134 |
allfieldsGer |
10.1016/j.future.2020.04.012 doi (DE-627)ELV00427895X (ELSEVIER)S0167-739X(19)31804-7 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Blanquer, Ignacio verfasserin aut Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be easily found on public cloud infrastructures or research centers. Nevertheless, the sensitivity of medical data poses several challenges on the access to such data, requiring security guarantees and isolation. In this paper we present an architecture that addresses this problem. It keeps critical data encrypted in memory and disk, which can only be accessed inside trusted execution environments protected by hardware extensions. Data is anonymized inside these environments and securely transferred to external sites that host accelerator devices, keeping the same network space and reducing security risks even in untrusted cloud backends. Results on the processing of data in different scenarios are presented and discussed. The results are demonstrated on a geographically-wide deployment provided by the ATMOSPHERE project. Trustworthy cloud services Federated clouds Medical imaging Brasileiro, Francisco verfasserin aut Brito, Andrey verfasserin aut Calatrava, Amanda verfasserin aut Carvalho, André verfasserin aut Fetzer, Christof verfasserin aut Figueiredo, Flavio verfasserin aut Guimarães, Ronny Petterson verfasserin aut Marinho, Leandro verfasserin aut Meira, Wagner verfasserin aut Silva, Altigran verfasserin aut Alberich-Bayarri, Ángel verfasserin aut Camacho-Ramos, Eduardo verfasserin aut Jimenez-Pastor, Ana verfasserin aut Ribeiro, Antonio Luiz L. verfasserin aut Nascimento, Bruno Ramos verfasserin aut Silva, Fábio verfasserin aut Enthalten in Future generation computer systems Amsterdam [u.a.] : Elsevier Science, 1984 110, Seite 119-134 Online-Ressource (DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 0167-739X nnns volume:110 pages:119-134 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 110 119-134 |
allfieldsSound |
10.1016/j.future.2020.04.012 doi (DE-627)ELV00427895X (ELSEVIER)S0167-739X(19)31804-7 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Blanquer, Ignacio verfasserin aut Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be easily found on public cloud infrastructures or research centers. Nevertheless, the sensitivity of medical data poses several challenges on the access to such data, requiring security guarantees and isolation. In this paper we present an architecture that addresses this problem. It keeps critical data encrypted in memory and disk, which can only be accessed inside trusted execution environments protected by hardware extensions. Data is anonymized inside these environments and securely transferred to external sites that host accelerator devices, keeping the same network space and reducing security risks even in untrusted cloud backends. Results on the processing of data in different scenarios are presented and discussed. The results are demonstrated on a geographically-wide deployment provided by the ATMOSPHERE project. Trustworthy cloud services Federated clouds Medical imaging Brasileiro, Francisco verfasserin aut Brito, Andrey verfasserin aut Calatrava, Amanda verfasserin aut Carvalho, André verfasserin aut Fetzer, Christof verfasserin aut Figueiredo, Flavio verfasserin aut Guimarães, Ronny Petterson verfasserin aut Marinho, Leandro verfasserin aut Meira, Wagner verfasserin aut Silva, Altigran verfasserin aut Alberich-Bayarri, Ángel verfasserin aut Camacho-Ramos, Eduardo verfasserin aut Jimenez-Pastor, Ana verfasserin aut Ribeiro, Antonio Luiz L. verfasserin aut Nascimento, Bruno Ramos verfasserin aut Silva, Fábio verfasserin aut Enthalten in Future generation computer systems Amsterdam [u.a.] : Elsevier Science, 1984 110, Seite 119-134 Online-Ressource (DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 0167-739X nnns volume:110 pages:119-134 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 110 119-134 |
language |
English |
source |
Enthalten in Future generation computer systems 110, Seite 119-134 volume:110 pages:119-134 |
sourceStr |
Enthalten in Future generation computer systems 110, Seite 119-134 volume:110 pages:119-134 |
format_phy_str_mv |
Article |
bklname |
Informatik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Trustworthy cloud services Federated clouds Medical imaging |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Future generation computer systems |
authorswithroles_txt_mv |
Blanquer, Ignacio @@aut@@ Brasileiro, Francisco @@aut@@ Brito, Andrey @@aut@@ Calatrava, Amanda @@aut@@ Carvalho, André @@aut@@ Fetzer, Christof @@aut@@ Figueiredo, Flavio @@aut@@ Guimarães, Ronny Petterson @@aut@@ Marinho, Leandro @@aut@@ Meira, Wagner @@aut@@ Silva, Altigran @@aut@@ Alberich-Bayarri, Ángel @@aut@@ Camacho-Ramos, Eduardo @@aut@@ Jimenez-Pastor, Ana @@aut@@ Ribeiro, Antonio Luiz L. @@aut@@ Nascimento, Bruno Ramos @@aut@@ Silva, Fábio @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320604284 |
dewey-sort |
14 |
id |
ELV00427895X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00427895X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.future.2020.04.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00427895X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-739X(19)31804-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blanquer, Ignacio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be easily found on public cloud infrastructures or research centers. Nevertheless, the sensitivity of medical data poses several challenges on the access to such data, requiring security guarantees and isolation. In this paper we present an architecture that addresses this problem. It keeps critical data encrypted in memory and disk, which can only be accessed inside trusted execution environments protected by hardware extensions. Data is anonymized inside these environments and securely transferred to external sites that host accelerator devices, keeping the same network space and reducing security risks even in untrusted cloud backends. Results on the processing of data in different scenarios are presented and discussed. The results are demonstrated on a geographically-wide deployment provided by the ATMOSPHERE project.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trustworthy cloud services</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Federated clouds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical imaging</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brasileiro, Francisco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brito, Andrey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calatrava, Amanda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carvalho, André</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fetzer, Christof</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Figueiredo, Flavio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guimarães, Ronny Petterson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marinho, Leandro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meira, Wagner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Altigran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alberich-Bayarri, Ángel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Camacho-Ramos, Eduardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jimenez-Pastor, Ana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ribeiro, Antonio Luiz L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nascimento, Bruno Ramos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Fábio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Future generation computer systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1984</subfield><subfield code="g">110, Seite 119-134</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604284</subfield><subfield code="w">(DE-600)2020551-X</subfield><subfield code="w">(DE-576)094399212</subfield><subfield code="x">0167-739X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:110</subfield><subfield code="g">pages:119-134</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">110</subfield><subfield code="h">119-134</subfield></datafield></record></collection>
|
author |
Blanquer, Ignacio |
spellingShingle |
Blanquer, Ignacio ddc 004 bkl 54.00 misc Trustworthy cloud services misc Federated clouds misc Medical imaging Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure |
authorStr |
Blanquer, Ignacio |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320604284 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0167-739X |
topic_title |
004 DE-600 54.00 bkl Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure Trustworthy cloud services Federated clouds Medical imaging |
topic |
ddc 004 bkl 54.00 misc Trustworthy cloud services misc Federated clouds misc Medical imaging |
topic_unstemmed |
ddc 004 bkl 54.00 misc Trustworthy cloud services misc Federated clouds misc Medical imaging |
topic_browse |
ddc 004 bkl 54.00 misc Trustworthy cloud services misc Federated clouds misc Medical imaging |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Future generation computer systems |
hierarchy_parent_id |
320604284 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Future generation computer systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320604284 (DE-600)2020551-X (DE-576)094399212 |
title |
Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure |
ctrlnum |
(DE-627)ELV00427895X (ELSEVIER)S0167-739X(19)31804-7 |
title_full |
Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure |
author_sort |
Blanquer, Ignacio |
journal |
Future generation computer systems |
journalStr |
Future generation computer systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
119 |
author_browse |
Blanquer, Ignacio Brasileiro, Francisco Brito, Andrey Calatrava, Amanda Carvalho, André Fetzer, Christof Figueiredo, Flavio Guimarães, Ronny Petterson Marinho, Leandro Meira, Wagner Silva, Altigran Alberich-Bayarri, Ángel Camacho-Ramos, Eduardo Jimenez-Pastor, Ana Ribeiro, Antonio Luiz L. Nascimento, Bruno Ramos Silva, Fábio |
container_volume |
110 |
class |
004 DE-600 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Blanquer, Ignacio |
doi_str_mv |
10.1016/j.future.2020.04.012 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure |
title_auth |
Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure |
abstract |
Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be easily found on public cloud infrastructures or research centers. Nevertheless, the sensitivity of medical data poses several challenges on the access to such data, requiring security guarantees and isolation. In this paper we present an architecture that addresses this problem. It keeps critical data encrypted in memory and disk, which can only be accessed inside trusted execution environments protected by hardware extensions. Data is anonymized inside these environments and securely transferred to external sites that host accelerator devices, keeping the same network space and reducing security risks even in untrusted cloud backends. Results on the processing of data in different scenarios are presented and discussed. The results are demonstrated on a geographically-wide deployment provided by the ATMOSPHERE project. |
abstractGer |
Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be easily found on public cloud infrastructures or research centers. Nevertheless, the sensitivity of medical data poses several challenges on the access to such data, requiring security guarantees and isolation. In this paper we present an architecture that addresses this problem. It keeps critical data encrypted in memory and disk, which can only be accessed inside trusted execution environments protected by hardware extensions. Data is anonymized inside these environments and securely transferred to external sites that host accelerator devices, keeping the same network space and reducing security risks even in untrusted cloud backends. Results on the processing of data in different scenarios are presented and discussed. The results are demonstrated on a geographically-wide deployment provided by the ATMOSPHERE project. |
abstract_unstemmed |
Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be easily found on public cloud infrastructures or research centers. Nevertheless, the sensitivity of medical data poses several challenges on the access to such data, requiring security guarantees and isolation. In this paper we present an architecture that addresses this problem. It keeps critical data encrypted in memory and disk, which can only be accessed inside trusted execution environments protected by hardware extensions. Data is anonymized inside these environments and securely transferred to external sites that host accelerator devices, keeping the same network space and reducing security risks even in untrusted cloud backends. Results on the processing of data in different scenarios are presented and discussed. The results are demonstrated on a geographically-wide deployment provided by the ATMOSPHERE project. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure |
remote_bool |
true |
author2 |
Brasileiro, Francisco Brito, Andrey Calatrava, Amanda Carvalho, André Fetzer, Christof Figueiredo, Flavio Guimarães, Ronny Petterson Marinho, Leandro Meira, Wagner Silva, Altigran Alberich-Bayarri, Ángel Camacho-Ramos, Eduardo Jimenez-Pastor, Ana Ribeiro, Antonio Luiz L. Nascimento, Bruno Ramos Silva, Fábio |
author2Str |
Brasileiro, Francisco Brito, Andrey Calatrava, Amanda Carvalho, André Fetzer, Christof Figueiredo, Flavio Guimarães, Ronny Petterson Marinho, Leandro Meira, Wagner Silva, Altigran Alberich-Bayarri, Ángel Camacho-Ramos, Eduardo Jimenez-Pastor, Ana Ribeiro, Antonio Luiz L. Nascimento, Bruno Ramos Silva, Fábio |
ppnlink |
320604284 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.future.2020.04.012 |
up_date |
2024-07-06T22:27:26.933Z |
_version_ |
1803870375179714560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00427895X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.future.2020.04.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00427895X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-739X(19)31804-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blanquer, Ignacio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Federated and secure cloud services for building medical image classifiers on an intercontinental infrastructure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Medical data processing has found a new dimension with the extensive use of machine-learning techniques to classify and extract features. Machine learning strongly benefits from computing accelerators. However, such accelerators are not easily available at hospital premises, although they can be easily found on public cloud infrastructures or research centers. Nevertheless, the sensitivity of medical data poses several challenges on the access to such data, requiring security guarantees and isolation. In this paper we present an architecture that addresses this problem. It keeps critical data encrypted in memory and disk, which can only be accessed inside trusted execution environments protected by hardware extensions. Data is anonymized inside these environments and securely transferred to external sites that host accelerator devices, keeping the same network space and reducing security risks even in untrusted cloud backends. Results on the processing of data in different scenarios are presented and discussed. The results are demonstrated on a geographically-wide deployment provided by the ATMOSPHERE project.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trustworthy cloud services</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Federated clouds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical imaging</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brasileiro, Francisco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brito, Andrey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calatrava, Amanda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carvalho, André</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fetzer, Christof</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Figueiredo, Flavio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guimarães, Ronny Petterson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marinho, Leandro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meira, Wagner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Altigran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alberich-Bayarri, Ángel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Camacho-Ramos, Eduardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jimenez-Pastor, Ana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ribeiro, Antonio Luiz L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nascimento, Bruno Ramos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Fábio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Future generation computer systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1984</subfield><subfield code="g">110, Seite 119-134</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604284</subfield><subfield code="w">(DE-600)2020551-X</subfield><subfield code="w">(DE-576)094399212</subfield><subfield code="x">0167-739X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:110</subfield><subfield code="g">pages:119-134</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">110</subfield><subfield code="h">119-134</subfield></datafield></record></collection>
|
score |
7.400387 |