Automatic extraction of vertebral landmarks from ultrasound images: A pilot study
Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. P...
Ausführliche Beschreibung
Autor*in: |
Brignol, A. [verfasserIn] Gueziri, H.E. [verfasserIn] Cheriet, F. [verfasserIn] Collins, D.L. [verfasserIn] Laporte, C. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers in biology and medicine - Amsterdam [u.a.] : Elsevier Science, 1970, 122 |
---|---|
Übergeordnetes Werk: |
volume:122 |
DOI / URN: |
10.1016/j.compbiomed.2020.103838 |
---|
Katalog-ID: |
ELV004348281 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004348281 | ||
003 | DE-627 | ||
005 | 20230524154309.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compbiomed.2020.103838 |2 doi | |
035 | |a (DE-627)ELV004348281 | ||
035 | |a (ELSEVIER)S0010-4825(20)30199-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 570 |q DE-600 |
084 | |a 42.00 |2 bkl | ||
084 | |a 44.09 |2 bkl | ||
100 | 1 | |a Brignol, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Automatic extraction of vertebral landmarks from ultrasound images: A pilot study |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. Prior knowledge about the vertebral shape and the associated hyper-echoic property is incorporated using the horizontal and vertical projections of the image intensities. After detrending, the mean-value crossing of the projections is used to define the concept of mean boundary and locate landmarks without the need for thresholding or parameter adjustment. The method was evaluated using two datasets: a porcine cadaver dataset (PC) with CT data registered to the US data used as a gold standard, and a healthy human subjects dataset (HH) with a silver standard generated from manual landmarks located on the US data acquired with a curvilinear (6C2) and linear (14L5) probe. The mean sum of distances (MSD) of the landmark extraction to the gold and silver standards is respectively M S D = 0 . 90 ± 1 . 05 mm for PC, M S D = 1 . 14 ± 1 . 08 mm (6C2) and M S D = 3 . 54 ± 2 . 69 mm (14L5) for HH. Results are satisfying on PC and HH with 6C2. Variable contrast quality for 14L5 gives satisfying results for the spinous process but not for the laminae. The proposed approach has the potential to be used for different applications in the context of US spine imaging such as scoliosis follow-up and intra-operative surgical guidance. | ||
650 | 4 | |a Ultrasound imaging | |
650 | 4 | |a Spine | |
650 | 4 | |a Vertebra | |
650 | 4 | |a Landmarks | |
650 | 4 | |a Automatic detection | |
700 | 1 | |a Gueziri, H.E. |e verfasserin |4 aut | |
700 | 1 | |a Cheriet, F. |e verfasserin |4 aut | |
700 | 1 | |a Collins, D.L. |e verfasserin |4 aut | |
700 | 1 | |a Laporte, C. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers in biology and medicine |d Amsterdam [u.a.] : Elsevier Science, 1970 |g 122 |h Online-Ressource |w (DE-627)306356783 |w (DE-600)1496984-1 |w (DE-576)081952988 |x 1879-0534 |7 nnns |
773 | 1 | 8 | |g volume:122 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 42.00 |
936 | b | k | |a 44.09 |j Medizintechnik |
951 | |a AR | ||
952 | |d 122 |
author_variant |
a b ab h g hg f c fc d c dc c l cl |
---|---|
matchkey_str |
article:18790534:2020----::uoaietatoovrerladakfoutao |
hierarchy_sort_str |
2020 |
bklnumber |
42.00 44.09 |
publishDate |
2020 |
allfields |
10.1016/j.compbiomed.2020.103838 doi (DE-627)ELV004348281 (ELSEVIER)S0010-4825(20)30199-2 DE-627 ger DE-627 rda eng 610 570 DE-600 42.00 bkl 44.09 bkl Brignol, A. verfasserin aut Automatic extraction of vertebral landmarks from ultrasound images: A pilot study 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. Prior knowledge about the vertebral shape and the associated hyper-echoic property is incorporated using the horizontal and vertical projections of the image intensities. After detrending, the mean-value crossing of the projections is used to define the concept of mean boundary and locate landmarks without the need for thresholding or parameter adjustment. The method was evaluated using two datasets: a porcine cadaver dataset (PC) with CT data registered to the US data used as a gold standard, and a healthy human subjects dataset (HH) with a silver standard generated from manual landmarks located on the US data acquired with a curvilinear (6C2) and linear (14L5) probe. The mean sum of distances (MSD) of the landmark extraction to the gold and silver standards is respectively M S D = 0 . 90 ± 1 . 05 mm for PC, M S D = 1 . 14 ± 1 . 08 mm (6C2) and M S D = 3 . 54 ± 2 . 69 mm (14L5) for HH. Results are satisfying on PC and HH with 6C2. Variable contrast quality for 14L5 gives satisfying results for the spinous process but not for the laminae. The proposed approach has the potential to be used for different applications in the context of US spine imaging such as scoliosis follow-up and intra-operative surgical guidance. Ultrasound imaging Spine Vertebra Landmarks Automatic detection Gueziri, H.E. verfasserin aut Cheriet, F. verfasserin aut Collins, D.L. verfasserin aut Laporte, C. verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 122 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:122 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 44.09 Medizintechnik AR 122 |
spelling |
10.1016/j.compbiomed.2020.103838 doi (DE-627)ELV004348281 (ELSEVIER)S0010-4825(20)30199-2 DE-627 ger DE-627 rda eng 610 570 DE-600 42.00 bkl 44.09 bkl Brignol, A. verfasserin aut Automatic extraction of vertebral landmarks from ultrasound images: A pilot study 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. Prior knowledge about the vertebral shape and the associated hyper-echoic property is incorporated using the horizontal and vertical projections of the image intensities. After detrending, the mean-value crossing of the projections is used to define the concept of mean boundary and locate landmarks without the need for thresholding or parameter adjustment. The method was evaluated using two datasets: a porcine cadaver dataset (PC) with CT data registered to the US data used as a gold standard, and a healthy human subjects dataset (HH) with a silver standard generated from manual landmarks located on the US data acquired with a curvilinear (6C2) and linear (14L5) probe. The mean sum of distances (MSD) of the landmark extraction to the gold and silver standards is respectively M S D = 0 . 90 ± 1 . 05 mm for PC, M S D = 1 . 14 ± 1 . 08 mm (6C2) and M S D = 3 . 54 ± 2 . 69 mm (14L5) for HH. Results are satisfying on PC and HH with 6C2. Variable contrast quality for 14L5 gives satisfying results for the spinous process but not for the laminae. The proposed approach has the potential to be used for different applications in the context of US spine imaging such as scoliosis follow-up and intra-operative surgical guidance. Ultrasound imaging Spine Vertebra Landmarks Automatic detection Gueziri, H.E. verfasserin aut Cheriet, F. verfasserin aut Collins, D.L. verfasserin aut Laporte, C. verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 122 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:122 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 44.09 Medizintechnik AR 122 |
allfields_unstemmed |
10.1016/j.compbiomed.2020.103838 doi (DE-627)ELV004348281 (ELSEVIER)S0010-4825(20)30199-2 DE-627 ger DE-627 rda eng 610 570 DE-600 42.00 bkl 44.09 bkl Brignol, A. verfasserin aut Automatic extraction of vertebral landmarks from ultrasound images: A pilot study 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. Prior knowledge about the vertebral shape and the associated hyper-echoic property is incorporated using the horizontal and vertical projections of the image intensities. After detrending, the mean-value crossing of the projections is used to define the concept of mean boundary and locate landmarks without the need for thresholding or parameter adjustment. The method was evaluated using two datasets: a porcine cadaver dataset (PC) with CT data registered to the US data used as a gold standard, and a healthy human subjects dataset (HH) with a silver standard generated from manual landmarks located on the US data acquired with a curvilinear (6C2) and linear (14L5) probe. The mean sum of distances (MSD) of the landmark extraction to the gold and silver standards is respectively M S D = 0 . 90 ± 1 . 05 mm for PC, M S D = 1 . 14 ± 1 . 08 mm (6C2) and M S D = 3 . 54 ± 2 . 69 mm (14L5) for HH. Results are satisfying on PC and HH with 6C2. Variable contrast quality for 14L5 gives satisfying results for the spinous process but not for the laminae. The proposed approach has the potential to be used for different applications in the context of US spine imaging such as scoliosis follow-up and intra-operative surgical guidance. Ultrasound imaging Spine Vertebra Landmarks Automatic detection Gueziri, H.E. verfasserin aut Cheriet, F. verfasserin aut Collins, D.L. verfasserin aut Laporte, C. verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 122 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:122 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 44.09 Medizintechnik AR 122 |
allfieldsGer |
10.1016/j.compbiomed.2020.103838 doi (DE-627)ELV004348281 (ELSEVIER)S0010-4825(20)30199-2 DE-627 ger DE-627 rda eng 610 570 DE-600 42.00 bkl 44.09 bkl Brignol, A. verfasserin aut Automatic extraction of vertebral landmarks from ultrasound images: A pilot study 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. Prior knowledge about the vertebral shape and the associated hyper-echoic property is incorporated using the horizontal and vertical projections of the image intensities. After detrending, the mean-value crossing of the projections is used to define the concept of mean boundary and locate landmarks without the need for thresholding or parameter adjustment. The method was evaluated using two datasets: a porcine cadaver dataset (PC) with CT data registered to the US data used as a gold standard, and a healthy human subjects dataset (HH) with a silver standard generated from manual landmarks located on the US data acquired with a curvilinear (6C2) and linear (14L5) probe. The mean sum of distances (MSD) of the landmark extraction to the gold and silver standards is respectively M S D = 0 . 90 ± 1 . 05 mm for PC, M S D = 1 . 14 ± 1 . 08 mm (6C2) and M S D = 3 . 54 ± 2 . 69 mm (14L5) for HH. Results are satisfying on PC and HH with 6C2. Variable contrast quality for 14L5 gives satisfying results for the spinous process but not for the laminae. The proposed approach has the potential to be used for different applications in the context of US spine imaging such as scoliosis follow-up and intra-operative surgical guidance. Ultrasound imaging Spine Vertebra Landmarks Automatic detection Gueziri, H.E. verfasserin aut Cheriet, F. verfasserin aut Collins, D.L. verfasserin aut Laporte, C. verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 122 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:122 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 44.09 Medizintechnik AR 122 |
allfieldsSound |
10.1016/j.compbiomed.2020.103838 doi (DE-627)ELV004348281 (ELSEVIER)S0010-4825(20)30199-2 DE-627 ger DE-627 rda eng 610 570 DE-600 42.00 bkl 44.09 bkl Brignol, A. verfasserin aut Automatic extraction of vertebral landmarks from ultrasound images: A pilot study 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. Prior knowledge about the vertebral shape and the associated hyper-echoic property is incorporated using the horizontal and vertical projections of the image intensities. After detrending, the mean-value crossing of the projections is used to define the concept of mean boundary and locate landmarks without the need for thresholding or parameter adjustment. The method was evaluated using two datasets: a porcine cadaver dataset (PC) with CT data registered to the US data used as a gold standard, and a healthy human subjects dataset (HH) with a silver standard generated from manual landmarks located on the US data acquired with a curvilinear (6C2) and linear (14L5) probe. The mean sum of distances (MSD) of the landmark extraction to the gold and silver standards is respectively M S D = 0 . 90 ± 1 . 05 mm for PC, M S D = 1 . 14 ± 1 . 08 mm (6C2) and M S D = 3 . 54 ± 2 . 69 mm (14L5) for HH. Results are satisfying on PC and HH with 6C2. Variable contrast quality for 14L5 gives satisfying results for the spinous process but not for the laminae. The proposed approach has the potential to be used for different applications in the context of US spine imaging such as scoliosis follow-up and intra-operative surgical guidance. Ultrasound imaging Spine Vertebra Landmarks Automatic detection Gueziri, H.E. verfasserin aut Cheriet, F. verfasserin aut Collins, D.L. verfasserin aut Laporte, C. verfasserin aut Enthalten in Computers in biology and medicine Amsterdam [u.a.] : Elsevier Science, 1970 122 Online-Ressource (DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 1879-0534 nnns volume:122 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 42.00 44.09 Medizintechnik AR 122 |
language |
English |
source |
Enthalten in Computers in biology and medicine 122 volume:122 |
sourceStr |
Enthalten in Computers in biology and medicine 122 volume:122 |
format_phy_str_mv |
Article |
bklname |
Medizintechnik |
institution |
findex.gbv.de |
topic_facet |
Ultrasound imaging Spine Vertebra Landmarks Automatic detection |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Computers in biology and medicine |
authorswithroles_txt_mv |
Brignol, A. @@aut@@ Gueziri, H.E. @@aut@@ Cheriet, F. @@aut@@ Collins, D.L. @@aut@@ Laporte, C. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306356783 |
dewey-sort |
3610 |
id |
ELV004348281 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004348281</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154309.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2020.103838</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004348281</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(20)30199-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brignol, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automatic extraction of vertebral landmarks from ultrasound images: A pilot study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. Prior knowledge about the vertebral shape and the associated hyper-echoic property is incorporated using the horizontal and vertical projections of the image intensities. After detrending, the mean-value crossing of the projections is used to define the concept of mean boundary and locate landmarks without the need for thresholding or parameter adjustment. The method was evaluated using two datasets: a porcine cadaver dataset (PC) with CT data registered to the US data used as a gold standard, and a healthy human subjects dataset (HH) with a silver standard generated from manual landmarks located on the US data acquired with a curvilinear (6C2) and linear (14L5) probe. The mean sum of distances (MSD) of the landmark extraction to the gold and silver standards is respectively M S D = 0 . 90 ± 1 . 05 mm for PC, M S D = 1 . 14 ± 1 . 08 mm (6C2) and M S D = 3 . 54 ± 2 . 69 mm (14L5) for HH. Results are satisfying on PC and HH with 6C2. Variable contrast quality for 14L5 gives satisfying results for the spinous process but not for the laminae. The proposed approach has the potential to be used for different applications in the context of US spine imaging such as scoliosis follow-up and intra-operative surgical guidance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasound imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landmarks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic detection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gueziri, H.E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheriet, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Collins, D.L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laporte, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">122</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306356783</subfield><subfield code="w">(DE-600)1496984-1</subfield><subfield code="w">(DE-576)081952988</subfield><subfield code="x">1879-0534</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">122</subfield></datafield></record></collection>
|
author |
Brignol, A. |
spellingShingle |
Brignol, A. ddc 610 bkl 42.00 bkl 44.09 misc Ultrasound imaging misc Spine misc Vertebra misc Landmarks misc Automatic detection Automatic extraction of vertebral landmarks from ultrasound images: A pilot study |
authorStr |
Brignol, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306356783 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0534 |
topic_title |
610 570 DE-600 42.00 bkl 44.09 bkl Automatic extraction of vertebral landmarks from ultrasound images: A pilot study Ultrasound imaging Spine Vertebra Landmarks Automatic detection |
topic |
ddc 610 bkl 42.00 bkl 44.09 misc Ultrasound imaging misc Spine misc Vertebra misc Landmarks misc Automatic detection |
topic_unstemmed |
ddc 610 bkl 42.00 bkl 44.09 misc Ultrasound imaging misc Spine misc Vertebra misc Landmarks misc Automatic detection |
topic_browse |
ddc 610 bkl 42.00 bkl 44.09 misc Ultrasound imaging misc Spine misc Vertebra misc Landmarks misc Automatic detection |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers in biology and medicine |
hierarchy_parent_id |
306356783 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Computers in biology and medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306356783 (DE-600)1496984-1 (DE-576)081952988 |
title |
Automatic extraction of vertebral landmarks from ultrasound images: A pilot study |
ctrlnum |
(DE-627)ELV004348281 (ELSEVIER)S0010-4825(20)30199-2 |
title_full |
Automatic extraction of vertebral landmarks from ultrasound images: A pilot study |
author_sort |
Brignol, A. |
journal |
Computers in biology and medicine |
journalStr |
Computers in biology and medicine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Brignol, A. Gueziri, H.E. Cheriet, F. Collins, D.L. Laporte, C. |
container_volume |
122 |
class |
610 570 DE-600 42.00 bkl 44.09 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Brignol, A. |
doi_str_mv |
10.1016/j.compbiomed.2020.103838 |
dewey-full |
610 570 |
author2-role |
verfasserin |
title_sort |
automatic extraction of vertebral landmarks from ultrasound images: a pilot study |
title_auth |
Automatic extraction of vertebral landmarks from ultrasound images: A pilot study |
abstract |
Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. Prior knowledge about the vertebral shape and the associated hyper-echoic property is incorporated using the horizontal and vertical projections of the image intensities. After detrending, the mean-value crossing of the projections is used to define the concept of mean boundary and locate landmarks without the need for thresholding or parameter adjustment. The method was evaluated using two datasets: a porcine cadaver dataset (PC) with CT data registered to the US data used as a gold standard, and a healthy human subjects dataset (HH) with a silver standard generated from manual landmarks located on the US data acquired with a curvilinear (6C2) and linear (14L5) probe. The mean sum of distances (MSD) of the landmark extraction to the gold and silver standards is respectively M S D = 0 . 90 ± 1 . 05 mm for PC, M S D = 1 . 14 ± 1 . 08 mm (6C2) and M S D = 3 . 54 ± 2 . 69 mm (14L5) for HH. Results are satisfying on PC and HH with 6C2. Variable contrast quality for 14L5 gives satisfying results for the spinous process but not for the laminae. The proposed approach has the potential to be used for different applications in the context of US spine imaging such as scoliosis follow-up and intra-operative surgical guidance. |
abstractGer |
Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. Prior knowledge about the vertebral shape and the associated hyper-echoic property is incorporated using the horizontal and vertical projections of the image intensities. After detrending, the mean-value crossing of the projections is used to define the concept of mean boundary and locate landmarks without the need for thresholding or parameter adjustment. The method was evaluated using two datasets: a porcine cadaver dataset (PC) with CT data registered to the US data used as a gold standard, and a healthy human subjects dataset (HH) with a silver standard generated from manual landmarks located on the US data acquired with a curvilinear (6C2) and linear (14L5) probe. The mean sum of distances (MSD) of the landmark extraction to the gold and silver standards is respectively M S D = 0 . 90 ± 1 . 05 mm for PC, M S D = 1 . 14 ± 1 . 08 mm (6C2) and M S D = 3 . 54 ± 2 . 69 mm (14L5) for HH. Results are satisfying on PC and HH with 6C2. Variable contrast quality for 14L5 gives satisfying results for the spinous process but not for the laminae. The proposed approach has the potential to be used for different applications in the context of US spine imaging such as scoliosis follow-up and intra-operative surgical guidance. |
abstract_unstemmed |
Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. Prior knowledge about the vertebral shape and the associated hyper-echoic property is incorporated using the horizontal and vertical projections of the image intensities. After detrending, the mean-value crossing of the projections is used to define the concept of mean boundary and locate landmarks without the need for thresholding or parameter adjustment. The method was evaluated using two datasets: a porcine cadaver dataset (PC) with CT data registered to the US data used as a gold standard, and a healthy human subjects dataset (HH) with a silver standard generated from manual landmarks located on the US data acquired with a curvilinear (6C2) and linear (14L5) probe. The mean sum of distances (MSD) of the landmark extraction to the gold and silver standards is respectively M S D = 0 . 90 ± 1 . 05 mm for PC, M S D = 1 . 14 ± 1 . 08 mm (6C2) and M S D = 3 . 54 ± 2 . 69 mm (14L5) for HH. Results are satisfying on PC and HH with 6C2. Variable contrast quality for 14L5 gives satisfying results for the spinous process but not for the laminae. The proposed approach has the potential to be used for different applications in the context of US spine imaging such as scoliosis follow-up and intra-operative surgical guidance. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Automatic extraction of vertebral landmarks from ultrasound images: A pilot study |
remote_bool |
true |
author2 |
Gueziri, H.E. Cheriet, F. Collins, D.L. Laporte, C. |
author2Str |
Gueziri, H.E. Cheriet, F. Collins, D.L. Laporte, C. |
ppnlink |
306356783 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compbiomed.2020.103838 |
up_date |
2024-07-06T22:41:18.110Z |
_version_ |
1803871246731968512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004348281</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154309.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2020.103838</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004348281</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(20)30199-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brignol, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automatic extraction of vertebral landmarks from ultrasound images: A pilot study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Interpreting ultrasound (US) images of the spine is challenging due to the high variability of the contrast during freehand US acquisitions. In this paper, an automatic method to extract vertebral landmarks (spinous process and laminae) from US images acquired in the transverse plane is presented. Prior knowledge about the vertebral shape and the associated hyper-echoic property is incorporated using the horizontal and vertical projections of the image intensities. After detrending, the mean-value crossing of the projections is used to define the concept of mean boundary and locate landmarks without the need for thresholding or parameter adjustment. The method was evaluated using two datasets: a porcine cadaver dataset (PC) with CT data registered to the US data used as a gold standard, and a healthy human subjects dataset (HH) with a silver standard generated from manual landmarks located on the US data acquired with a curvilinear (6C2) and linear (14L5) probe. The mean sum of distances (MSD) of the landmark extraction to the gold and silver standards is respectively M S D = 0 . 90 ± 1 . 05 mm for PC, M S D = 1 . 14 ± 1 . 08 mm (6C2) and M S D = 3 . 54 ± 2 . 69 mm (14L5) for HH. Results are satisfying on PC and HH with 6C2. Variable contrast quality for 14L5 gives satisfying results for the spinous process but not for the laminae. The proposed approach has the potential to be used for different applications in the context of US spine imaging such as scoliosis follow-up and intra-operative surgical guidance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasound imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landmarks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic detection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gueziri, H.E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheriet, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Collins, D.L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laporte, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers in biology and medicine</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">122</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306356783</subfield><subfield code="w">(DE-600)1496984-1</subfield><subfield code="w">(DE-576)081952988</subfield><subfield code="x">1879-0534</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">122</subfield></datafield></record></collection>
|
score |
7.4009666 |