A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks
The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most imp...
Ausführliche Beschreibung
Autor*in: |
Petrova, Vera [verfasserIn] Schmauder, Siegfried [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and applied fracture mechanics - Amsterdam : North-Holland, 1984, 108 |
---|---|
Übergeordnetes Werk: |
volume:108 |
DOI / URN: |
10.1016/j.tafmec.2020.102605 |
---|
Katalog-ID: |
ELV004409957 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004409957 | ||
003 | DE-627 | ||
005 | 20230524144449.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tafmec.2020.102605 |2 doi | |
035 | |a (DE-627)ELV004409957 | ||
035 | |a (ELSEVIER)S0167-8442(20)30181-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q DE-600 |
084 | |a 51.32 |2 bkl | ||
100 | 1 | |a Petrova, Vera |e verfasserin |4 aut | |
245 | 1 | 0 | |a A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most important cases, which arise during the exploitation of FGC structures. The FGC contains pre-existing systems of cracks, such as edge, internal and interface cracks. The mathematical description of the model is based on singular integral equations. The properties of the FGC are continuous functions of the thickness coordinate. Furthermore, the non-homogeneity of the functionally graded material is revealed in the form of corresponding inhomogeneous traction distributions on the surfaces of cracks. This method is approximate and used with the assumption, that the gradation of material properties of the FGC with the depth of the layer is not abrupt. The influence of residual stresses caused by temperature changes on ΔT (e.g. cooling from operating temperatures) is investigated in detail. Different crack patterns (which are reported in experiments and available in the literature) are studied by carrying out numerical experiments with respect to stress intensity factors and fracture angles (a deviation of cracks from the initial direction of propagation). The proposed model in combination with a detailed parametric analysis can help to optimize FGCs in order to improve the fracture resistance of FGC/homogeneous structures. | ||
650 | 4 | |a Thermo-mechanical load | |
650 | 4 | |a Functionally graded coating | |
650 | 4 | |a Stress intensity factors | |
650 | 4 | |a Fracture angles | |
650 | 4 | |a Singular integral equations | |
650 | 4 | |a Semi-analytical solution | |
700 | 1 | |a Schmauder, Siegfried |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and applied fracture mechanics |d Amsterdam : North-Holland, 1984 |g 108 |h Online-Ressource |w (DE-627)320514021 |w (DE-600)2013739-4 |w (DE-576)259484814 |x 0167-8442 |7 nnns |
773 | 1 | 8 | |g volume:108 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 51.32 |j Werkstoffmechanik |
951 | |a AR | ||
952 | |d 108 |
author_variant |
v p vp s s ss |
---|---|
matchkey_str |
article:01678442:2020----::tertcloefrhsuyfhrafatrofntoalgaetemlarecaigwt |
hierarchy_sort_str |
2020 |
bklnumber |
51.32 |
publishDate |
2020 |
allfields |
10.1016/j.tafmec.2020.102605 doi (DE-627)ELV004409957 (ELSEVIER)S0167-8442(20)30181-6 DE-627 ger DE-627 rda eng 670 DE-600 51.32 bkl Petrova, Vera verfasserin aut A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most important cases, which arise during the exploitation of FGC structures. The FGC contains pre-existing systems of cracks, such as edge, internal and interface cracks. The mathematical description of the model is based on singular integral equations. The properties of the FGC are continuous functions of the thickness coordinate. Furthermore, the non-homogeneity of the functionally graded material is revealed in the form of corresponding inhomogeneous traction distributions on the surfaces of cracks. This method is approximate and used with the assumption, that the gradation of material properties of the FGC with the depth of the layer is not abrupt. The influence of residual stresses caused by temperature changes on ΔT (e.g. cooling from operating temperatures) is investigated in detail. Different crack patterns (which are reported in experiments and available in the literature) are studied by carrying out numerical experiments with respect to stress intensity factors and fracture angles (a deviation of cracks from the initial direction of propagation). The proposed model in combination with a detailed parametric analysis can help to optimize FGCs in order to improve the fracture resistance of FGC/homogeneous structures. Thermo-mechanical load Functionally graded coating Stress intensity factors Fracture angles Singular integral equations Semi-analytical solution Schmauder, Siegfried verfasserin aut Enthalten in Theoretical and applied fracture mechanics Amsterdam : North-Holland, 1984 108 Online-Ressource (DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 0167-8442 nnns volume:108 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 108 |
spelling |
10.1016/j.tafmec.2020.102605 doi (DE-627)ELV004409957 (ELSEVIER)S0167-8442(20)30181-6 DE-627 ger DE-627 rda eng 670 DE-600 51.32 bkl Petrova, Vera verfasserin aut A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most important cases, which arise during the exploitation of FGC structures. The FGC contains pre-existing systems of cracks, such as edge, internal and interface cracks. The mathematical description of the model is based on singular integral equations. The properties of the FGC are continuous functions of the thickness coordinate. Furthermore, the non-homogeneity of the functionally graded material is revealed in the form of corresponding inhomogeneous traction distributions on the surfaces of cracks. This method is approximate and used with the assumption, that the gradation of material properties of the FGC with the depth of the layer is not abrupt. The influence of residual stresses caused by temperature changes on ΔT (e.g. cooling from operating temperatures) is investigated in detail. Different crack patterns (which are reported in experiments and available in the literature) are studied by carrying out numerical experiments with respect to stress intensity factors and fracture angles (a deviation of cracks from the initial direction of propagation). The proposed model in combination with a detailed parametric analysis can help to optimize FGCs in order to improve the fracture resistance of FGC/homogeneous structures. Thermo-mechanical load Functionally graded coating Stress intensity factors Fracture angles Singular integral equations Semi-analytical solution Schmauder, Siegfried verfasserin aut Enthalten in Theoretical and applied fracture mechanics Amsterdam : North-Holland, 1984 108 Online-Ressource (DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 0167-8442 nnns volume:108 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 108 |
allfields_unstemmed |
10.1016/j.tafmec.2020.102605 doi (DE-627)ELV004409957 (ELSEVIER)S0167-8442(20)30181-6 DE-627 ger DE-627 rda eng 670 DE-600 51.32 bkl Petrova, Vera verfasserin aut A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most important cases, which arise during the exploitation of FGC structures. The FGC contains pre-existing systems of cracks, such as edge, internal and interface cracks. The mathematical description of the model is based on singular integral equations. The properties of the FGC are continuous functions of the thickness coordinate. Furthermore, the non-homogeneity of the functionally graded material is revealed in the form of corresponding inhomogeneous traction distributions on the surfaces of cracks. This method is approximate and used with the assumption, that the gradation of material properties of the FGC with the depth of the layer is not abrupt. The influence of residual stresses caused by temperature changes on ΔT (e.g. cooling from operating temperatures) is investigated in detail. Different crack patterns (which are reported in experiments and available in the literature) are studied by carrying out numerical experiments with respect to stress intensity factors and fracture angles (a deviation of cracks from the initial direction of propagation). The proposed model in combination with a detailed parametric analysis can help to optimize FGCs in order to improve the fracture resistance of FGC/homogeneous structures. Thermo-mechanical load Functionally graded coating Stress intensity factors Fracture angles Singular integral equations Semi-analytical solution Schmauder, Siegfried verfasserin aut Enthalten in Theoretical and applied fracture mechanics Amsterdam : North-Holland, 1984 108 Online-Ressource (DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 0167-8442 nnns volume:108 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 108 |
allfieldsGer |
10.1016/j.tafmec.2020.102605 doi (DE-627)ELV004409957 (ELSEVIER)S0167-8442(20)30181-6 DE-627 ger DE-627 rda eng 670 DE-600 51.32 bkl Petrova, Vera verfasserin aut A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most important cases, which arise during the exploitation of FGC structures. The FGC contains pre-existing systems of cracks, such as edge, internal and interface cracks. The mathematical description of the model is based on singular integral equations. The properties of the FGC are continuous functions of the thickness coordinate. Furthermore, the non-homogeneity of the functionally graded material is revealed in the form of corresponding inhomogeneous traction distributions on the surfaces of cracks. This method is approximate and used with the assumption, that the gradation of material properties of the FGC with the depth of the layer is not abrupt. The influence of residual stresses caused by temperature changes on ΔT (e.g. cooling from operating temperatures) is investigated in detail. Different crack patterns (which are reported in experiments and available in the literature) are studied by carrying out numerical experiments with respect to stress intensity factors and fracture angles (a deviation of cracks from the initial direction of propagation). The proposed model in combination with a detailed parametric analysis can help to optimize FGCs in order to improve the fracture resistance of FGC/homogeneous structures. Thermo-mechanical load Functionally graded coating Stress intensity factors Fracture angles Singular integral equations Semi-analytical solution Schmauder, Siegfried verfasserin aut Enthalten in Theoretical and applied fracture mechanics Amsterdam : North-Holland, 1984 108 Online-Ressource (DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 0167-8442 nnns volume:108 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 108 |
allfieldsSound |
10.1016/j.tafmec.2020.102605 doi (DE-627)ELV004409957 (ELSEVIER)S0167-8442(20)30181-6 DE-627 ger DE-627 rda eng 670 DE-600 51.32 bkl Petrova, Vera verfasserin aut A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most important cases, which arise during the exploitation of FGC structures. The FGC contains pre-existing systems of cracks, such as edge, internal and interface cracks. The mathematical description of the model is based on singular integral equations. The properties of the FGC are continuous functions of the thickness coordinate. Furthermore, the non-homogeneity of the functionally graded material is revealed in the form of corresponding inhomogeneous traction distributions on the surfaces of cracks. This method is approximate and used with the assumption, that the gradation of material properties of the FGC with the depth of the layer is not abrupt. The influence of residual stresses caused by temperature changes on ΔT (e.g. cooling from operating temperatures) is investigated in detail. Different crack patterns (which are reported in experiments and available in the literature) are studied by carrying out numerical experiments with respect to stress intensity factors and fracture angles (a deviation of cracks from the initial direction of propagation). The proposed model in combination with a detailed parametric analysis can help to optimize FGCs in order to improve the fracture resistance of FGC/homogeneous structures. Thermo-mechanical load Functionally graded coating Stress intensity factors Fracture angles Singular integral equations Semi-analytical solution Schmauder, Siegfried verfasserin aut Enthalten in Theoretical and applied fracture mechanics Amsterdam : North-Holland, 1984 108 Online-Ressource (DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 0167-8442 nnns volume:108 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 108 |
language |
English |
source |
Enthalten in Theoretical and applied fracture mechanics 108 volume:108 |
sourceStr |
Enthalten in Theoretical and applied fracture mechanics 108 volume:108 |
format_phy_str_mv |
Article |
bklname |
Werkstoffmechanik |
institution |
findex.gbv.de |
topic_facet |
Thermo-mechanical load Functionally graded coating Stress intensity factors Fracture angles Singular integral equations Semi-analytical solution |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Theoretical and applied fracture mechanics |
authorswithroles_txt_mv |
Petrova, Vera @@aut@@ Schmauder, Siegfried @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320514021 |
dewey-sort |
3670 |
id |
ELV004409957 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004409957</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144449.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tafmec.2020.102605</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004409957</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-8442(20)30181-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petrova, Vera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most important cases, which arise during the exploitation of FGC structures. The FGC contains pre-existing systems of cracks, such as edge, internal and interface cracks. The mathematical description of the model is based on singular integral equations. The properties of the FGC are continuous functions of the thickness coordinate. Furthermore, the non-homogeneity of the functionally graded material is revealed in the form of corresponding inhomogeneous traction distributions on the surfaces of cracks. This method is approximate and used with the assumption, that the gradation of material properties of the FGC with the depth of the layer is not abrupt. The influence of residual stresses caused by temperature changes on ΔT (e.g. cooling from operating temperatures) is investigated in detail. Different crack patterns (which are reported in experiments and available in the literature) are studied by carrying out numerical experiments with respect to stress intensity factors and fracture angles (a deviation of cracks from the initial direction of propagation). The proposed model in combination with a detailed parametric analysis can help to optimize FGCs in order to improve the fracture resistance of FGC/homogeneous structures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermo-mechanical load</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functionally graded coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress intensity factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracture angles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semi-analytical solution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmauder, Siegfried</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and applied fracture mechanics</subfield><subfield code="d">Amsterdam : North-Holland, 1984</subfield><subfield code="g">108</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320514021</subfield><subfield code="w">(DE-600)2013739-4</subfield><subfield code="w">(DE-576)259484814</subfield><subfield code="x">0167-8442</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield></datafield></record></collection>
|
author |
Petrova, Vera |
spellingShingle |
Petrova, Vera ddc 670 bkl 51.32 misc Thermo-mechanical load misc Functionally graded coating misc Stress intensity factors misc Fracture angles misc Singular integral equations misc Semi-analytical solution A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks |
authorStr |
Petrova, Vera |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320514021 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0167-8442 |
topic_title |
670 DE-600 51.32 bkl A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks Thermo-mechanical load Functionally graded coating Stress intensity factors Fracture angles Singular integral equations Semi-analytical solution |
topic |
ddc 670 bkl 51.32 misc Thermo-mechanical load misc Functionally graded coating misc Stress intensity factors misc Fracture angles misc Singular integral equations misc Semi-analytical solution |
topic_unstemmed |
ddc 670 bkl 51.32 misc Thermo-mechanical load misc Functionally graded coating misc Stress intensity factors misc Fracture angles misc Singular integral equations misc Semi-analytical solution |
topic_browse |
ddc 670 bkl 51.32 misc Thermo-mechanical load misc Functionally graded coating misc Stress intensity factors misc Fracture angles misc Singular integral equations misc Semi-analytical solution |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Theoretical and applied fracture mechanics |
hierarchy_parent_id |
320514021 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Theoretical and applied fracture mechanics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320514021 (DE-600)2013739-4 (DE-576)259484814 |
title |
A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks |
ctrlnum |
(DE-627)ELV004409957 (ELSEVIER)S0167-8442(20)30181-6 |
title_full |
A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks |
author_sort |
Petrova, Vera |
journal |
Theoretical and applied fracture mechanics |
journalStr |
Theoretical and applied fracture mechanics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Petrova, Vera Schmauder, Siegfried |
container_volume |
108 |
class |
670 DE-600 51.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Petrova, Vera |
doi_str_mv |
10.1016/j.tafmec.2020.102605 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
a theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks |
title_auth |
A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks |
abstract |
The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most important cases, which arise during the exploitation of FGC structures. The FGC contains pre-existing systems of cracks, such as edge, internal and interface cracks. The mathematical description of the model is based on singular integral equations. The properties of the FGC are continuous functions of the thickness coordinate. Furthermore, the non-homogeneity of the functionally graded material is revealed in the form of corresponding inhomogeneous traction distributions on the surfaces of cracks. This method is approximate and used with the assumption, that the gradation of material properties of the FGC with the depth of the layer is not abrupt. The influence of residual stresses caused by temperature changes on ΔT (e.g. cooling from operating temperatures) is investigated in detail. Different crack patterns (which are reported in experiments and available in the literature) are studied by carrying out numerical experiments with respect to stress intensity factors and fracture angles (a deviation of cracks from the initial direction of propagation). The proposed model in combination with a detailed parametric analysis can help to optimize FGCs in order to improve the fracture resistance of FGC/homogeneous structures. |
abstractGer |
The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most important cases, which arise during the exploitation of FGC structures. The FGC contains pre-existing systems of cracks, such as edge, internal and interface cracks. The mathematical description of the model is based on singular integral equations. The properties of the FGC are continuous functions of the thickness coordinate. Furthermore, the non-homogeneity of the functionally graded material is revealed in the form of corresponding inhomogeneous traction distributions on the surfaces of cracks. This method is approximate and used with the assumption, that the gradation of material properties of the FGC with the depth of the layer is not abrupt. The influence of residual stresses caused by temperature changes on ΔT (e.g. cooling from operating temperatures) is investigated in detail. Different crack patterns (which are reported in experiments and available in the literature) are studied by carrying out numerical experiments with respect to stress intensity factors and fracture angles (a deviation of cracks from the initial direction of propagation). The proposed model in combination with a detailed parametric analysis can help to optimize FGCs in order to improve the fracture resistance of FGC/homogeneous structures. |
abstract_unstemmed |
The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most important cases, which arise during the exploitation of FGC structures. The FGC contains pre-existing systems of cracks, such as edge, internal and interface cracks. The mathematical description of the model is based on singular integral equations. The properties of the FGC are continuous functions of the thickness coordinate. Furthermore, the non-homogeneity of the functionally graded material is revealed in the form of corresponding inhomogeneous traction distributions on the surfaces of cracks. This method is approximate and used with the assumption, that the gradation of material properties of the FGC with the depth of the layer is not abrupt. The influence of residual stresses caused by temperature changes on ΔT (e.g. cooling from operating temperatures) is investigated in detail. Different crack patterns (which are reported in experiments and available in the literature) are studied by carrying out numerical experiments with respect to stress intensity factors and fracture angles (a deviation of cracks from the initial direction of propagation). The proposed model in combination with a detailed parametric analysis can help to optimize FGCs in order to improve the fracture resistance of FGC/homogeneous structures. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks |
remote_bool |
true |
author2 |
Schmauder, Siegfried |
author2Str |
Schmauder, Siegfried |
ppnlink |
320514021 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.tafmec.2020.102605 |
up_date |
2024-07-06T22:53:44.588Z |
_version_ |
1803872029470883840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004409957</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144449.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tafmec.2020.102605</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004409957</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-8442(20)30181-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petrova, Vera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A theoretical model for the study of thermal fracture of functionally graded thermal barrier coatings with a system of edge and internal cracks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The problem of fracture of functionally graded coatings (FGCs) on a homogeneous substrate (a semi-infinite medium) is investigated under the influence of thermal and/or mechanical loads (e.g. a heat flux, residual thermal stresses caused by cooling-heating, tension). These loads reflect the most important cases, which arise during the exploitation of FGC structures. The FGC contains pre-existing systems of cracks, such as edge, internal and interface cracks. The mathematical description of the model is based on singular integral equations. The properties of the FGC are continuous functions of the thickness coordinate. Furthermore, the non-homogeneity of the functionally graded material is revealed in the form of corresponding inhomogeneous traction distributions on the surfaces of cracks. This method is approximate and used with the assumption, that the gradation of material properties of the FGC with the depth of the layer is not abrupt. The influence of residual stresses caused by temperature changes on ΔT (e.g. cooling from operating temperatures) is investigated in detail. Different crack patterns (which are reported in experiments and available in the literature) are studied by carrying out numerical experiments with respect to stress intensity factors and fracture angles (a deviation of cracks from the initial direction of propagation). The proposed model in combination with a detailed parametric analysis can help to optimize FGCs in order to improve the fracture resistance of FGC/homogeneous structures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermo-mechanical load</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functionally graded coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress intensity factors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracture angles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semi-analytical solution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmauder, Siegfried</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and applied fracture mechanics</subfield><subfield code="d">Amsterdam : North-Holland, 1984</subfield><subfield code="g">108</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320514021</subfield><subfield code="w">(DE-600)2013739-4</subfield><subfield code="w">(DE-576)259484814</subfield><subfield code="x">0167-8442</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield></datafield></record></collection>
|
score |
7.4011364 |