Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation
Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this pa...
Ausführliche Beschreibung
Autor*in: |
Tang, Xianlun [verfasserIn] Zhong, Bing [verfasserIn] Peng, Jiangping [verfasserIn] Hao, Bohui [verfasserIn] Li, Jie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied soft computing - Amsterdam [u.a.] : Elsevier Science, 2001, 93 |
---|---|
Übergeordnetes Werk: |
volume:93 |
DOI / URN: |
10.1016/j.asoc.2020.106353 |
---|
Katalog-ID: |
ELV004438795 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004438795 | ||
003 | DE-627 | ||
005 | 20230524152335.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.asoc.2020.106353 |2 doi | |
035 | |a (DE-627)ELV004438795 | ||
035 | |a (ELSEVIER)S1568-4946(20)30293-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Tang, Xianlun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this paper, we proposed a multi-scale channel importance sorting and important spatial information positioning (MSCS) encoder–decoder for segmentation in Retinal Vessels. Firstly, the fully convolutional encoder–decoder is formed to implement a series of linear and non-linear transformation and achieve end-to-end segmentation tasks. Then, the channel importance sorting module is employed to suppress useless feature responses during the process of encoding and to identify effective channels, whose information is utilized to recognize capillaries and the retinal vessels at the ends. Finally, in the decoding stage, the spatial attention mechanism module is designed to extract the positioning information of multi-scale feature maps. The spatial information of retinal vessels is collected to better locate the position of the vessels. In addition, aiming at taking fully advantage of the network, the multi-scale asymmetric cascade convolution module is proposed to reduce the parameters of the model and increase the operation rate. Experimental results on DRIVE, STARE datasets indicate that the proposed method outperforms other state-of-the-art strategies. This system, as demonstrated, can greatly decrease false positive rate of the blood vessels at the ends and enhance the sharpness of retinal vessels. | ||
650 | 4 | |a Multi-scale | |
650 | 4 | |a Asymmetric cascade convolution | |
650 | 4 | |a Channel independence | |
650 | 4 | |a Spatial attention mechanism | |
650 | 4 | |a Retinal vessels | |
700 | 1 | |a Zhong, Bing |e verfasserin |4 aut | |
700 | 1 | |a Peng, Jiangping |e verfasserin |4 aut | |
700 | 1 | |a Hao, Bohui |e verfasserin |4 aut | |
700 | 1 | |a Li, Jie |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied soft computing |d Amsterdam [u.a.] : Elsevier Science, 2001 |g 93 |h Online-Ressource |w (DE-627)334375754 |w (DE-600)2057709-6 |w (DE-576)256145733 |x 1568-4946 |7 nnns |
773 | 1 | 8 | |g volume:93 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.00 |j Informatik: Allgemeines |
951 | |a AR | ||
952 | |d 93 |
author_variant |
x t xt b z bz j p jp b h bh j l jl |
---|---|
matchkey_str |
article:15684946:2020----::utsaehneipracsrignsailtetomcaimor |
hierarchy_sort_str |
2020 |
bklnumber |
54.00 |
publishDate |
2020 |
allfields |
10.1016/j.asoc.2020.106353 doi (DE-627)ELV004438795 (ELSEVIER)S1568-4946(20)30293-3 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Tang, Xianlun verfasserin aut Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this paper, we proposed a multi-scale channel importance sorting and important spatial information positioning (MSCS) encoder–decoder for segmentation in Retinal Vessels. Firstly, the fully convolutional encoder–decoder is formed to implement a series of linear and non-linear transformation and achieve end-to-end segmentation tasks. Then, the channel importance sorting module is employed to suppress useless feature responses during the process of encoding and to identify effective channels, whose information is utilized to recognize capillaries and the retinal vessels at the ends. Finally, in the decoding stage, the spatial attention mechanism module is designed to extract the positioning information of multi-scale feature maps. The spatial information of retinal vessels is collected to better locate the position of the vessels. In addition, aiming at taking fully advantage of the network, the multi-scale asymmetric cascade convolution module is proposed to reduce the parameters of the model and increase the operation rate. Experimental results on DRIVE, STARE datasets indicate that the proposed method outperforms other state-of-the-art strategies. This system, as demonstrated, can greatly decrease false positive rate of the blood vessels at the ends and enhance the sharpness of retinal vessels. Multi-scale Asymmetric cascade convolution Channel independence Spatial attention mechanism Retinal vessels Zhong, Bing verfasserin aut Peng, Jiangping verfasserin aut Hao, Bohui verfasserin aut Li, Jie verfasserin aut Enthalten in Applied soft computing Amsterdam [u.a.] : Elsevier Science, 2001 93 Online-Ressource (DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 1568-4946 nnns volume:93 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 93 |
spelling |
10.1016/j.asoc.2020.106353 doi (DE-627)ELV004438795 (ELSEVIER)S1568-4946(20)30293-3 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Tang, Xianlun verfasserin aut Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this paper, we proposed a multi-scale channel importance sorting and important spatial information positioning (MSCS) encoder–decoder for segmentation in Retinal Vessels. Firstly, the fully convolutional encoder–decoder is formed to implement a series of linear and non-linear transformation and achieve end-to-end segmentation tasks. Then, the channel importance sorting module is employed to suppress useless feature responses during the process of encoding and to identify effective channels, whose information is utilized to recognize capillaries and the retinal vessels at the ends. Finally, in the decoding stage, the spatial attention mechanism module is designed to extract the positioning information of multi-scale feature maps. The spatial information of retinal vessels is collected to better locate the position of the vessels. In addition, aiming at taking fully advantage of the network, the multi-scale asymmetric cascade convolution module is proposed to reduce the parameters of the model and increase the operation rate. Experimental results on DRIVE, STARE datasets indicate that the proposed method outperforms other state-of-the-art strategies. This system, as demonstrated, can greatly decrease false positive rate of the blood vessels at the ends and enhance the sharpness of retinal vessels. Multi-scale Asymmetric cascade convolution Channel independence Spatial attention mechanism Retinal vessels Zhong, Bing verfasserin aut Peng, Jiangping verfasserin aut Hao, Bohui verfasserin aut Li, Jie verfasserin aut Enthalten in Applied soft computing Amsterdam [u.a.] : Elsevier Science, 2001 93 Online-Ressource (DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 1568-4946 nnns volume:93 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 93 |
allfields_unstemmed |
10.1016/j.asoc.2020.106353 doi (DE-627)ELV004438795 (ELSEVIER)S1568-4946(20)30293-3 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Tang, Xianlun verfasserin aut Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this paper, we proposed a multi-scale channel importance sorting and important spatial information positioning (MSCS) encoder–decoder for segmentation in Retinal Vessels. Firstly, the fully convolutional encoder–decoder is formed to implement a series of linear and non-linear transformation and achieve end-to-end segmentation tasks. Then, the channel importance sorting module is employed to suppress useless feature responses during the process of encoding and to identify effective channels, whose information is utilized to recognize capillaries and the retinal vessels at the ends. Finally, in the decoding stage, the spatial attention mechanism module is designed to extract the positioning information of multi-scale feature maps. The spatial information of retinal vessels is collected to better locate the position of the vessels. In addition, aiming at taking fully advantage of the network, the multi-scale asymmetric cascade convolution module is proposed to reduce the parameters of the model and increase the operation rate. Experimental results on DRIVE, STARE datasets indicate that the proposed method outperforms other state-of-the-art strategies. This system, as demonstrated, can greatly decrease false positive rate of the blood vessels at the ends and enhance the sharpness of retinal vessels. Multi-scale Asymmetric cascade convolution Channel independence Spatial attention mechanism Retinal vessels Zhong, Bing verfasserin aut Peng, Jiangping verfasserin aut Hao, Bohui verfasserin aut Li, Jie verfasserin aut Enthalten in Applied soft computing Amsterdam [u.a.] : Elsevier Science, 2001 93 Online-Ressource (DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 1568-4946 nnns volume:93 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 93 |
allfieldsGer |
10.1016/j.asoc.2020.106353 doi (DE-627)ELV004438795 (ELSEVIER)S1568-4946(20)30293-3 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Tang, Xianlun verfasserin aut Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this paper, we proposed a multi-scale channel importance sorting and important spatial information positioning (MSCS) encoder–decoder for segmentation in Retinal Vessels. Firstly, the fully convolutional encoder–decoder is formed to implement a series of linear and non-linear transformation and achieve end-to-end segmentation tasks. Then, the channel importance sorting module is employed to suppress useless feature responses during the process of encoding and to identify effective channels, whose information is utilized to recognize capillaries and the retinal vessels at the ends. Finally, in the decoding stage, the spatial attention mechanism module is designed to extract the positioning information of multi-scale feature maps. The spatial information of retinal vessels is collected to better locate the position of the vessels. In addition, aiming at taking fully advantage of the network, the multi-scale asymmetric cascade convolution module is proposed to reduce the parameters of the model and increase the operation rate. Experimental results on DRIVE, STARE datasets indicate that the proposed method outperforms other state-of-the-art strategies. This system, as demonstrated, can greatly decrease false positive rate of the blood vessels at the ends and enhance the sharpness of retinal vessels. Multi-scale Asymmetric cascade convolution Channel independence Spatial attention mechanism Retinal vessels Zhong, Bing verfasserin aut Peng, Jiangping verfasserin aut Hao, Bohui verfasserin aut Li, Jie verfasserin aut Enthalten in Applied soft computing Amsterdam [u.a.] : Elsevier Science, 2001 93 Online-Ressource (DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 1568-4946 nnns volume:93 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 93 |
allfieldsSound |
10.1016/j.asoc.2020.106353 doi (DE-627)ELV004438795 (ELSEVIER)S1568-4946(20)30293-3 DE-627 ger DE-627 rda eng 004 DE-600 54.00 bkl Tang, Xianlun verfasserin aut Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this paper, we proposed a multi-scale channel importance sorting and important spatial information positioning (MSCS) encoder–decoder for segmentation in Retinal Vessels. Firstly, the fully convolutional encoder–decoder is formed to implement a series of linear and non-linear transformation and achieve end-to-end segmentation tasks. Then, the channel importance sorting module is employed to suppress useless feature responses during the process of encoding and to identify effective channels, whose information is utilized to recognize capillaries and the retinal vessels at the ends. Finally, in the decoding stage, the spatial attention mechanism module is designed to extract the positioning information of multi-scale feature maps. The spatial information of retinal vessels is collected to better locate the position of the vessels. In addition, aiming at taking fully advantage of the network, the multi-scale asymmetric cascade convolution module is proposed to reduce the parameters of the model and increase the operation rate. Experimental results on DRIVE, STARE datasets indicate that the proposed method outperforms other state-of-the-art strategies. This system, as demonstrated, can greatly decrease false positive rate of the blood vessels at the ends and enhance the sharpness of retinal vessels. Multi-scale Asymmetric cascade convolution Channel independence Spatial attention mechanism Retinal vessels Zhong, Bing verfasserin aut Peng, Jiangping verfasserin aut Hao, Bohui verfasserin aut Li, Jie verfasserin aut Enthalten in Applied soft computing Amsterdam [u.a.] : Elsevier Science, 2001 93 Online-Ressource (DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 1568-4946 nnns volume:93 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.00 Informatik: Allgemeines AR 93 |
language |
English |
source |
Enthalten in Applied soft computing 93 volume:93 |
sourceStr |
Enthalten in Applied soft computing 93 volume:93 |
format_phy_str_mv |
Article |
bklname |
Informatik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Multi-scale Asymmetric cascade convolution Channel independence Spatial attention mechanism Retinal vessels |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Applied soft computing |
authorswithroles_txt_mv |
Tang, Xianlun @@aut@@ Zhong, Bing @@aut@@ Peng, Jiangping @@aut@@ Hao, Bohui @@aut@@ Li, Jie @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
334375754 |
dewey-sort |
14 |
id |
ELV004438795 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004438795</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152335.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.asoc.2020.106353</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004438795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1568-4946(20)30293-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, Xianlun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this paper, we proposed a multi-scale channel importance sorting and important spatial information positioning (MSCS) encoder–decoder for segmentation in Retinal Vessels. Firstly, the fully convolutional encoder–decoder is formed to implement a series of linear and non-linear transformation and achieve end-to-end segmentation tasks. Then, the channel importance sorting module is employed to suppress useless feature responses during the process of encoding and to identify effective channels, whose information is utilized to recognize capillaries and the retinal vessels at the ends. Finally, in the decoding stage, the spatial attention mechanism module is designed to extract the positioning information of multi-scale feature maps. The spatial information of retinal vessels is collected to better locate the position of the vessels. In addition, aiming at taking fully advantage of the network, the multi-scale asymmetric cascade convolution module is proposed to reduce the parameters of the model and increase the operation rate. Experimental results on DRIVE, STARE datasets indicate that the proposed method outperforms other state-of-the-art strategies. This system, as demonstrated, can greatly decrease false positive rate of the blood vessels at the ends and enhance the sharpness of retinal vessels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetric cascade convolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Channel independence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial attention mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retinal vessels</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhong, Bing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Jiangping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Bohui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied soft computing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2001</subfield><subfield code="g">93</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)334375754</subfield><subfield code="w">(DE-600)2057709-6</subfield><subfield code="w">(DE-576)256145733</subfield><subfield code="x">1568-4946</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:93</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">93</subfield></datafield></record></collection>
|
author |
Tang, Xianlun |
spellingShingle |
Tang, Xianlun ddc 004 bkl 54.00 misc Multi-scale misc Asymmetric cascade convolution misc Channel independence misc Spatial attention mechanism misc Retinal vessels Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation |
authorStr |
Tang, Xianlun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)334375754 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1568-4946 |
topic_title |
004 DE-600 54.00 bkl Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation Multi-scale Asymmetric cascade convolution Channel independence Spatial attention mechanism Retinal vessels |
topic |
ddc 004 bkl 54.00 misc Multi-scale misc Asymmetric cascade convolution misc Channel independence misc Spatial attention mechanism misc Retinal vessels |
topic_unstemmed |
ddc 004 bkl 54.00 misc Multi-scale misc Asymmetric cascade convolution misc Channel independence misc Spatial attention mechanism misc Retinal vessels |
topic_browse |
ddc 004 bkl 54.00 misc Multi-scale misc Asymmetric cascade convolution misc Channel independence misc Spatial attention mechanism misc Retinal vessels |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied soft computing |
hierarchy_parent_id |
334375754 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Applied soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)334375754 (DE-600)2057709-6 (DE-576)256145733 |
title |
Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation |
ctrlnum |
(DE-627)ELV004438795 (ELSEVIER)S1568-4946(20)30293-3 |
title_full |
Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation |
author_sort |
Tang, Xianlun |
journal |
Applied soft computing |
journalStr |
Applied soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Tang, Xianlun Zhong, Bing Peng, Jiangping Hao, Bohui Li, Jie |
container_volume |
93 |
class |
004 DE-600 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tang, Xianlun |
doi_str_mv |
10.1016/j.asoc.2020.106353 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation |
title_auth |
Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation |
abstract |
Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this paper, we proposed a multi-scale channel importance sorting and important spatial information positioning (MSCS) encoder–decoder for segmentation in Retinal Vessels. Firstly, the fully convolutional encoder–decoder is formed to implement a series of linear and non-linear transformation and achieve end-to-end segmentation tasks. Then, the channel importance sorting module is employed to suppress useless feature responses during the process of encoding and to identify effective channels, whose information is utilized to recognize capillaries and the retinal vessels at the ends. Finally, in the decoding stage, the spatial attention mechanism module is designed to extract the positioning information of multi-scale feature maps. The spatial information of retinal vessels is collected to better locate the position of the vessels. In addition, aiming at taking fully advantage of the network, the multi-scale asymmetric cascade convolution module is proposed to reduce the parameters of the model and increase the operation rate. Experimental results on DRIVE, STARE datasets indicate that the proposed method outperforms other state-of-the-art strategies. This system, as demonstrated, can greatly decrease false positive rate of the blood vessels at the ends and enhance the sharpness of retinal vessels. |
abstractGer |
Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this paper, we proposed a multi-scale channel importance sorting and important spatial information positioning (MSCS) encoder–decoder for segmentation in Retinal Vessels. Firstly, the fully convolutional encoder–decoder is formed to implement a series of linear and non-linear transformation and achieve end-to-end segmentation tasks. Then, the channel importance sorting module is employed to suppress useless feature responses during the process of encoding and to identify effective channels, whose information is utilized to recognize capillaries and the retinal vessels at the ends. Finally, in the decoding stage, the spatial attention mechanism module is designed to extract the positioning information of multi-scale feature maps. The spatial information of retinal vessels is collected to better locate the position of the vessels. In addition, aiming at taking fully advantage of the network, the multi-scale asymmetric cascade convolution module is proposed to reduce the parameters of the model and increase the operation rate. Experimental results on DRIVE, STARE datasets indicate that the proposed method outperforms other state-of-the-art strategies. This system, as demonstrated, can greatly decrease false positive rate of the blood vessels at the ends and enhance the sharpness of retinal vessels. |
abstract_unstemmed |
Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this paper, we proposed a multi-scale channel importance sorting and important spatial information positioning (MSCS) encoder–decoder for segmentation in Retinal Vessels. Firstly, the fully convolutional encoder–decoder is formed to implement a series of linear and non-linear transformation and achieve end-to-end segmentation tasks. Then, the channel importance sorting module is employed to suppress useless feature responses during the process of encoding and to identify effective channels, whose information is utilized to recognize capillaries and the retinal vessels at the ends. Finally, in the decoding stage, the spatial attention mechanism module is designed to extract the positioning information of multi-scale feature maps. The spatial information of retinal vessels is collected to better locate the position of the vessels. In addition, aiming at taking fully advantage of the network, the multi-scale asymmetric cascade convolution module is proposed to reduce the parameters of the model and increase the operation rate. Experimental results on DRIVE, STARE datasets indicate that the proposed method outperforms other state-of-the-art strategies. This system, as demonstrated, can greatly decrease false positive rate of the blood vessels at the ends and enhance the sharpness of retinal vessels. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation |
remote_bool |
true |
author2 |
Zhong, Bing Peng, Jiangping Hao, Bohui Li, Jie |
author2Str |
Zhong, Bing Peng, Jiangping Hao, Bohui Li, Jie |
ppnlink |
334375754 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.asoc.2020.106353 |
up_date |
2024-07-06T22:59:34.223Z |
_version_ |
1803872396089753600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004438795</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152335.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.asoc.2020.106353</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004438795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1568-4946(20)30293-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, Xianlun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Retinal Vessels segmentation is an important procedure for detecting and diagnosing a variety of pathological diseases. However, the inherent complex properties around the disc make it challenging to improve the segmenting accuracy of capillaries and the retinal blood vessels at the ends. In this paper, we proposed a multi-scale channel importance sorting and important spatial information positioning (MSCS) encoder–decoder for segmentation in Retinal Vessels. Firstly, the fully convolutional encoder–decoder is formed to implement a series of linear and non-linear transformation and achieve end-to-end segmentation tasks. Then, the channel importance sorting module is employed to suppress useless feature responses during the process of encoding and to identify effective channels, whose information is utilized to recognize capillaries and the retinal vessels at the ends. Finally, in the decoding stage, the spatial attention mechanism module is designed to extract the positioning information of multi-scale feature maps. The spatial information of retinal vessels is collected to better locate the position of the vessels. In addition, aiming at taking fully advantage of the network, the multi-scale asymmetric cascade convolution module is proposed to reduce the parameters of the model and increase the operation rate. Experimental results on DRIVE, STARE datasets indicate that the proposed method outperforms other state-of-the-art strategies. This system, as demonstrated, can greatly decrease false positive rate of the blood vessels at the ends and enhance the sharpness of retinal vessels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetric cascade convolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Channel independence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial attention mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Retinal vessels</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhong, Bing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Jiangping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Bohui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied soft computing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2001</subfield><subfield code="g">93</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)334375754</subfield><subfield code="w">(DE-600)2057709-6</subfield><subfield code="w">(DE-576)256145733</subfield><subfield code="x">1568-4946</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:93</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">93</subfield></datafield></record></collection>
|
score |
7.4015055 |