Opportunities for seagrass research derived from remote sensing: A review of current methods
Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities incl...
Ausführliche Beschreibung
Autor*in: |
Veettil, Bijeesh Kozhikkodan [verfasserIn] Ward, Raymond D. [verfasserIn] Lima, Mariana Do Amaral Camara [verfasserIn] Stankovic, Milica [verfasserIn] Hoai, Pham Ngoc [verfasserIn] Quang, Ngo Xuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Ecological indicators - Amsterdam [u.a.] : Elsevier Science, 2001, 117 |
---|---|
Übergeordnetes Werk: |
volume:117 |
DOI / URN: |
10.1016/j.ecolind.2020.106560 |
---|
Katalog-ID: |
ELV004452526 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004452526 | ||
003 | DE-627 | ||
005 | 20230524121823.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecolind.2020.106560 |2 doi | |
035 | |a (DE-627)ELV004452526 | ||
035 | |a (ELSEVIER)S1470-160X(20)30497-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 630 |q DE-600 |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Veettil, Bijeesh Kozhikkodan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Opportunities for seagrass research derived from remote sensing: A review of current methods |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation. | ||
650 | 4 | |a Submerged marine vegetation | |
650 | 4 | |a Coastal ecosystems | |
650 | 4 | |a Marine environment | |
650 | 4 | |a Coastal management | |
700 | 1 | |a Ward, Raymond D. |e verfasserin |0 (orcid)0000-0002-7391-5530 |4 aut | |
700 | 1 | |a Lima, Mariana Do Amaral Camara |e verfasserin |4 aut | |
700 | 1 | |a Stankovic, Milica |e verfasserin |4 aut | |
700 | 1 | |a Hoai, Pham Ngoc |e verfasserin |4 aut | |
700 | 1 | |a Quang, Ngo Xuan |e verfasserin |0 (orcid)0000-0003-2587-1999 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ecological indicators |d Amsterdam [u.a.] : Elsevier Science, 2001 |g 117 |h Online-Ressource |w (DE-627)338074163 |w (DE-600)2063587-4 |w (DE-576)259272388 |x 1872-7034 |7 nnns |
773 | 1 | 8 | |g volume:117 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 117 |
author_variant |
b k v bk bkv r d w rd rdw m d a c l mdac mdacl m s ms p n h pn pnh n x q nx nxq |
---|---|
matchkey_str |
article:18727034:2020----::potntefregaseerheieformtsnig |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1016/j.ecolind.2020.106560 doi (DE-627)ELV004452526 (ELSEVIER)S1470-160X(20)30497-0 DE-627 ger DE-627 rda eng 570 630 DE-600 BIODIV DE-30 fid Veettil, Bijeesh Kozhikkodan verfasserin aut Opportunities for seagrass research derived from remote sensing: A review of current methods 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation. Submerged marine vegetation Coastal ecosystems Marine environment Coastal management Ward, Raymond D. verfasserin (orcid)0000-0002-7391-5530 aut Lima, Mariana Do Amaral Camara verfasserin aut Stankovic, Milica verfasserin aut Hoai, Pham Ngoc verfasserin aut Quang, Ngo Xuan verfasserin (orcid)0000-0003-2587-1999 aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 117 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:117 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 117 |
spelling |
10.1016/j.ecolind.2020.106560 doi (DE-627)ELV004452526 (ELSEVIER)S1470-160X(20)30497-0 DE-627 ger DE-627 rda eng 570 630 DE-600 BIODIV DE-30 fid Veettil, Bijeesh Kozhikkodan verfasserin aut Opportunities for seagrass research derived from remote sensing: A review of current methods 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation. Submerged marine vegetation Coastal ecosystems Marine environment Coastal management Ward, Raymond D. verfasserin (orcid)0000-0002-7391-5530 aut Lima, Mariana Do Amaral Camara verfasserin aut Stankovic, Milica verfasserin aut Hoai, Pham Ngoc verfasserin aut Quang, Ngo Xuan verfasserin (orcid)0000-0003-2587-1999 aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 117 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:117 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 117 |
allfields_unstemmed |
10.1016/j.ecolind.2020.106560 doi (DE-627)ELV004452526 (ELSEVIER)S1470-160X(20)30497-0 DE-627 ger DE-627 rda eng 570 630 DE-600 BIODIV DE-30 fid Veettil, Bijeesh Kozhikkodan verfasserin aut Opportunities for seagrass research derived from remote sensing: A review of current methods 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation. Submerged marine vegetation Coastal ecosystems Marine environment Coastal management Ward, Raymond D. verfasserin (orcid)0000-0002-7391-5530 aut Lima, Mariana Do Amaral Camara verfasserin aut Stankovic, Milica verfasserin aut Hoai, Pham Ngoc verfasserin aut Quang, Ngo Xuan verfasserin (orcid)0000-0003-2587-1999 aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 117 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:117 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 117 |
allfieldsGer |
10.1016/j.ecolind.2020.106560 doi (DE-627)ELV004452526 (ELSEVIER)S1470-160X(20)30497-0 DE-627 ger DE-627 rda eng 570 630 DE-600 BIODIV DE-30 fid Veettil, Bijeesh Kozhikkodan verfasserin aut Opportunities for seagrass research derived from remote sensing: A review of current methods 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation. Submerged marine vegetation Coastal ecosystems Marine environment Coastal management Ward, Raymond D. verfasserin (orcid)0000-0002-7391-5530 aut Lima, Mariana Do Amaral Camara verfasserin aut Stankovic, Milica verfasserin aut Hoai, Pham Ngoc verfasserin aut Quang, Ngo Xuan verfasserin (orcid)0000-0003-2587-1999 aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 117 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:117 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 117 |
allfieldsSound |
10.1016/j.ecolind.2020.106560 doi (DE-627)ELV004452526 (ELSEVIER)S1470-160X(20)30497-0 DE-627 ger DE-627 rda eng 570 630 DE-600 BIODIV DE-30 fid Veettil, Bijeesh Kozhikkodan verfasserin aut Opportunities for seagrass research derived from remote sensing: A review of current methods 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation. Submerged marine vegetation Coastal ecosystems Marine environment Coastal management Ward, Raymond D. verfasserin (orcid)0000-0002-7391-5530 aut Lima, Mariana Do Amaral Camara verfasserin aut Stankovic, Milica verfasserin aut Hoai, Pham Ngoc verfasserin aut Quang, Ngo Xuan verfasserin (orcid)0000-0003-2587-1999 aut Enthalten in Ecological indicators Amsterdam [u.a.] : Elsevier Science, 2001 117 Online-Ressource (DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 1872-7034 nnns volume:117 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 117 |
language |
English |
source |
Enthalten in Ecological indicators 117 volume:117 |
sourceStr |
Enthalten in Ecological indicators 117 volume:117 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Submerged marine vegetation Coastal ecosystems Marine environment Coastal management |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Ecological indicators |
authorswithroles_txt_mv |
Veettil, Bijeesh Kozhikkodan @@aut@@ Ward, Raymond D. @@aut@@ Lima, Mariana Do Amaral Camara @@aut@@ Stankovic, Milica @@aut@@ Hoai, Pham Ngoc @@aut@@ Quang, Ngo Xuan @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
338074163 |
dewey-sort |
3570 |
id |
ELV004452526 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004452526</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524121823.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2020.106560</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004452526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1470-160X(20)30497-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">630</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Veettil, Bijeesh Kozhikkodan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Opportunities for seagrass research derived from remote sensing: A review of current methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Submerged marine vegetation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coastal ecosystems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marine environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coastal management</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ward, Raymond D.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7391-5530</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lima, Mariana Do Amaral Camara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stankovic, Milica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoai, Pham Ngoc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Quang, Ngo Xuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2587-1999</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ecological indicators</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2001</subfield><subfield code="g">117</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="w">(DE-576)259272388</subfield><subfield code="x">1872-7034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:117</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">117</subfield></datafield></record></collection>
|
author |
Veettil, Bijeesh Kozhikkodan |
spellingShingle |
Veettil, Bijeesh Kozhikkodan ddc 570 fid BIODIV misc Submerged marine vegetation misc Coastal ecosystems misc Marine environment misc Coastal management Opportunities for seagrass research derived from remote sensing: A review of current methods |
authorStr |
Veettil, Bijeesh Kozhikkodan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)338074163 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 630 - Agriculture & related technologies |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-7034 |
topic_title |
570 630 DE-600 BIODIV DE-30 fid Opportunities for seagrass research derived from remote sensing: A review of current methods Submerged marine vegetation Coastal ecosystems Marine environment Coastal management |
topic |
ddc 570 fid BIODIV misc Submerged marine vegetation misc Coastal ecosystems misc Marine environment misc Coastal management |
topic_unstemmed |
ddc 570 fid BIODIV misc Submerged marine vegetation misc Coastal ecosystems misc Marine environment misc Coastal management |
topic_browse |
ddc 570 fid BIODIV misc Submerged marine vegetation misc Coastal ecosystems misc Marine environment misc Coastal management |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecological indicators |
hierarchy_parent_id |
338074163 |
dewey-tens |
570 - Life sciences; biology 630 - Agriculture |
hierarchy_top_title |
Ecological indicators |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)338074163 (DE-600)2063587-4 (DE-576)259272388 |
title |
Opportunities for seagrass research derived from remote sensing: A review of current methods |
ctrlnum |
(DE-627)ELV004452526 (ELSEVIER)S1470-160X(20)30497-0 |
title_full |
Opportunities for seagrass research derived from remote sensing: A review of current methods |
author_sort |
Veettil, Bijeesh Kozhikkodan |
journal |
Ecological indicators |
journalStr |
Ecological indicators |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Veettil, Bijeesh Kozhikkodan Ward, Raymond D. Lima, Mariana Do Amaral Camara Stankovic, Milica Hoai, Pham Ngoc Quang, Ngo Xuan |
container_volume |
117 |
class |
570 630 DE-600 BIODIV DE-30 fid |
format_se |
Elektronische Aufsätze |
author-letter |
Veettil, Bijeesh Kozhikkodan |
doi_str_mv |
10.1016/j.ecolind.2020.106560 |
normlink |
(ORCID)0000-0002-7391-5530 (ORCID)0000-0003-2587-1999 |
normlink_prefix_str_mv |
(orcid)0000-0002-7391-5530 (orcid)0000-0003-2587-1999 |
dewey-full |
570 630 |
author2-role |
verfasserin |
title_sort |
opportunities for seagrass research derived from remote sensing: a review of current methods |
title_auth |
Opportunities for seagrass research derived from remote sensing: A review of current methods |
abstract |
Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation. |
abstractGer |
Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation. |
abstract_unstemmed |
Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Opportunities for seagrass research derived from remote sensing: A review of current methods |
remote_bool |
true |
author2 |
Ward, Raymond D. Lima, Mariana Do Amaral Camara Stankovic, Milica Hoai, Pham Ngoc Quang, Ngo Xuan |
author2Str |
Ward, Raymond D. Lima, Mariana Do Amaral Camara Stankovic, Milica Hoai, Pham Ngoc Quang, Ngo Xuan |
ppnlink |
338074163 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecolind.2020.106560 |
up_date |
2024-07-06T23:02:22.182Z |
_version_ |
1803872572207529984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004452526</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524121823.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2020.106560</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004452526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1470-160X(20)30497-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">630</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Veettil, Bijeesh Kozhikkodan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Opportunities for seagrass research derived from remote sensing: A review of current methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Submerged marine vegetation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coastal ecosystems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marine environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coastal management</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ward, Raymond D.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7391-5530</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lima, Mariana Do Amaral Camara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stankovic, Milica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoai, Pham Ngoc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Quang, Ngo Xuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2587-1999</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ecological indicators</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 2001</subfield><subfield code="g">117</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="w">(DE-576)259272388</subfield><subfield code="x">1872-7034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:117</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">117</subfield></datafield></record></collection>
|
score |
7.4008274 |