Wigner instability analysis of the damped Hirota equation
We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms...
Ausführliche Beschreibung
Autor*in: |
Assaubay, Al–Tarazi [verfasserIn] Castro, Alejandro J. [verfasserIn] Valido, Antonio A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Physica / D - Amsterdam [u.a.] : Elsevier, 1980, 411 |
---|---|
Übergeordnetes Werk: |
volume:411 |
DOI / URN: |
10.1016/j.physd.2020.132587 |
---|
Katalog-ID: |
ELV00446950X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00446950X | ||
003 | DE-627 | ||
005 | 20230524155602.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.physd.2020.132587 |2 doi | |
035 | |a (DE-627)ELV00446950X | ||
035 | |a (ELSEVIER)S0167-2789(19)30690-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 30.20 |2 bkl | ||
084 | |a 33.25 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Assaubay, Al–Tarazi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Wigner instability analysis of the damped Hirota equation |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order contributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally, we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the modulation instability (e.g. the generation of the so-called rogue waves). | ||
650 | 4 | |a Damped Hirota equation | |
650 | 4 | |a Incoherent modulation instability | |
650 | 4 | |a Lorentzian spectrum damping | |
700 | 1 | |a Castro, Alejandro J. |e verfasserin |4 aut | |
700 | 1 | |a Valido, Antonio A. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Physica / D |d Amsterdam [u.a.] : Elsevier, 1980 |g 411 |h Online-Ressource |w (DE-627)266015166 |w (DE-600)1466587-6 |w (DE-576)074959867 |x 1872-8022 |7 nnns |
773 | 1 | 8 | |g volume:411 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 30.20 |j Nichtlineare Dynamik |
936 | b | k | |a 33.25 |j Thermodynamik |j statistische Physik |
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |
951 | |a AR | ||
952 | |d 411 |
author_variant |
a a aa a j c aj ajc a a v aa aav |
---|---|
matchkey_str |
article:18728022:2020----::inrntbltaayioteapd |
hierarchy_sort_str |
2020 |
bklnumber |
30.20 33.25 31.00 |
publishDate |
2020 |
allfields |
10.1016/j.physd.2020.132587 doi (DE-627)ELV00446950X (ELSEVIER)S0167-2789(19)30690-6 DE-627 ger DE-627 rda eng 530 DE-600 30.20 bkl 33.25 bkl 31.00 bkl Assaubay, Al–Tarazi verfasserin aut Wigner instability analysis of the damped Hirota equation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order contributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally, we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the modulation instability (e.g. the generation of the so-called rogue waves). Damped Hirota equation Incoherent modulation instability Lorentzian spectrum damping Castro, Alejandro J. verfasserin aut Valido, Antonio A. verfasserin aut Enthalten in Physica / D Amsterdam [u.a.] : Elsevier, 1980 411 Online-Ressource (DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 1872-8022 nnns volume:411 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 30.20 Nichtlineare Dynamik 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 411 |
spelling |
10.1016/j.physd.2020.132587 doi (DE-627)ELV00446950X (ELSEVIER)S0167-2789(19)30690-6 DE-627 ger DE-627 rda eng 530 DE-600 30.20 bkl 33.25 bkl 31.00 bkl Assaubay, Al–Tarazi verfasserin aut Wigner instability analysis of the damped Hirota equation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order contributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally, we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the modulation instability (e.g. the generation of the so-called rogue waves). Damped Hirota equation Incoherent modulation instability Lorentzian spectrum damping Castro, Alejandro J. verfasserin aut Valido, Antonio A. verfasserin aut Enthalten in Physica / D Amsterdam [u.a.] : Elsevier, 1980 411 Online-Ressource (DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 1872-8022 nnns volume:411 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 30.20 Nichtlineare Dynamik 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 411 |
allfields_unstemmed |
10.1016/j.physd.2020.132587 doi (DE-627)ELV00446950X (ELSEVIER)S0167-2789(19)30690-6 DE-627 ger DE-627 rda eng 530 DE-600 30.20 bkl 33.25 bkl 31.00 bkl Assaubay, Al–Tarazi verfasserin aut Wigner instability analysis of the damped Hirota equation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order contributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally, we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the modulation instability (e.g. the generation of the so-called rogue waves). Damped Hirota equation Incoherent modulation instability Lorentzian spectrum damping Castro, Alejandro J. verfasserin aut Valido, Antonio A. verfasserin aut Enthalten in Physica / D Amsterdam [u.a.] : Elsevier, 1980 411 Online-Ressource (DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 1872-8022 nnns volume:411 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 30.20 Nichtlineare Dynamik 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 411 |
allfieldsGer |
10.1016/j.physd.2020.132587 doi (DE-627)ELV00446950X (ELSEVIER)S0167-2789(19)30690-6 DE-627 ger DE-627 rda eng 530 DE-600 30.20 bkl 33.25 bkl 31.00 bkl Assaubay, Al–Tarazi verfasserin aut Wigner instability analysis of the damped Hirota equation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order contributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally, we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the modulation instability (e.g. the generation of the so-called rogue waves). Damped Hirota equation Incoherent modulation instability Lorentzian spectrum damping Castro, Alejandro J. verfasserin aut Valido, Antonio A. verfasserin aut Enthalten in Physica / D Amsterdam [u.a.] : Elsevier, 1980 411 Online-Ressource (DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 1872-8022 nnns volume:411 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 30.20 Nichtlineare Dynamik 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 411 |
allfieldsSound |
10.1016/j.physd.2020.132587 doi (DE-627)ELV00446950X (ELSEVIER)S0167-2789(19)30690-6 DE-627 ger DE-627 rda eng 530 DE-600 30.20 bkl 33.25 bkl 31.00 bkl Assaubay, Al–Tarazi verfasserin aut Wigner instability analysis of the damped Hirota equation 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order contributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally, we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the modulation instability (e.g. the generation of the so-called rogue waves). Damped Hirota equation Incoherent modulation instability Lorentzian spectrum damping Castro, Alejandro J. verfasserin aut Valido, Antonio A. verfasserin aut Enthalten in Physica / D Amsterdam [u.a.] : Elsevier, 1980 411 Online-Ressource (DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 1872-8022 nnns volume:411 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 30.20 Nichtlineare Dynamik 33.25 Thermodynamik statistische Physik 31.00 Mathematik: Allgemeines AR 411 |
language |
English |
source |
Enthalten in Physica / D 411 volume:411 |
sourceStr |
Enthalten in Physica / D 411 volume:411 |
format_phy_str_mv |
Article |
bklname |
Nichtlineare Dynamik Thermodynamik statistische Physik Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Damped Hirota equation Incoherent modulation instability Lorentzian spectrum damping |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Physica / D |
authorswithroles_txt_mv |
Assaubay, Al–Tarazi @@aut@@ Castro, Alejandro J. @@aut@@ Valido, Antonio A. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
266015166 |
dewey-sort |
3530 |
id |
ELV00446950X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00446950X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155602.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physd.2020.132587</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00446950X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-2789(19)30690-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Assaubay, Al–Tarazi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wigner instability analysis of the damped Hirota equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order contributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally, we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the modulation instability (e.g. the generation of the so-called rogue waves).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damped Hirota equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incoherent modulation instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lorentzian spectrum damping</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castro, Alejandro J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valido, Antonio A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physica / D</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1980</subfield><subfield code="g">411</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266015166</subfield><subfield code="w">(DE-600)1466587-6</subfield><subfield code="w">(DE-576)074959867</subfield><subfield code="x">1872-8022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.20</subfield><subfield code="j">Nichtlineare Dynamik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">411</subfield></datafield></record></collection>
|
author |
Assaubay, Al–Tarazi |
spellingShingle |
Assaubay, Al–Tarazi ddc 530 bkl 30.20 bkl 33.25 bkl 31.00 misc Damped Hirota equation misc Incoherent modulation instability misc Lorentzian spectrum damping Wigner instability analysis of the damped Hirota equation |
authorStr |
Assaubay, Al–Tarazi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266015166 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-8022 |
topic_title |
530 DE-600 30.20 bkl 33.25 bkl 31.00 bkl Wigner instability analysis of the damped Hirota equation Damped Hirota equation Incoherent modulation instability Lorentzian spectrum damping |
topic |
ddc 530 bkl 30.20 bkl 33.25 bkl 31.00 misc Damped Hirota equation misc Incoherent modulation instability misc Lorentzian spectrum damping |
topic_unstemmed |
ddc 530 bkl 30.20 bkl 33.25 bkl 31.00 misc Damped Hirota equation misc Incoherent modulation instability misc Lorentzian spectrum damping |
topic_browse |
ddc 530 bkl 30.20 bkl 33.25 bkl 31.00 misc Damped Hirota equation misc Incoherent modulation instability misc Lorentzian spectrum damping |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physica / D |
hierarchy_parent_id |
266015166 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Physica / D |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266015166 (DE-600)1466587-6 (DE-576)074959867 |
title |
Wigner instability analysis of the damped Hirota equation |
ctrlnum |
(DE-627)ELV00446950X (ELSEVIER)S0167-2789(19)30690-6 |
title_full |
Wigner instability analysis of the damped Hirota equation |
author_sort |
Assaubay, Al–Tarazi |
journal |
Physica / D |
journalStr |
Physica / D |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Assaubay, Al–Tarazi Castro, Alejandro J. Valido, Antonio A. |
container_volume |
411 |
class |
530 DE-600 30.20 bkl 33.25 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Assaubay, Al–Tarazi |
doi_str_mv |
10.1016/j.physd.2020.132587 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
wigner instability analysis of the damped hirota equation |
title_auth |
Wigner instability analysis of the damped Hirota equation |
abstract |
We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order contributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally, we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the modulation instability (e.g. the generation of the so-called rogue waves). |
abstractGer |
We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order contributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally, we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the modulation instability (e.g. the generation of the so-called rogue waves). |
abstract_unstemmed |
We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order contributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally, we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the modulation instability (e.g. the generation of the so-called rogue waves). |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Wigner instability analysis of the damped Hirota equation |
remote_bool |
true |
author2 |
Castro, Alejandro J. Valido, Antonio A. |
author2Str |
Castro, Alejandro J. Valido, Antonio A. |
ppnlink |
266015166 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.physd.2020.132587 |
up_date |
2024-07-06T23:05:44.517Z |
_version_ |
1803872784371154944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00446950X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155602.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physd.2020.132587</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00446950X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-2789(19)30690-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Assaubay, Al–Tarazi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wigner instability analysis of the damped Hirota equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We address the modulation instability of the Hirota equation in the presence of stochastic spatial incoherence and linear time-dependent amplification/attenuation processes via the Wigner function approach. We show that the modulation instability remains baseband type, though the damping mechanisms substantially reduce the unstable spectrum independent of the higher-order contributions (e.g. the higher-order nonlinear interaction and the third-order dispersion). Additionally, we find out that the unstable structure due to the Kerr interaction exhibits a significant resilience to the third-order-dispersion stabilizing effects in comparison with the higher-order nonlinearity, as well as a moderate Lorentzian spectrum damping may assist the rising of instability. Finally, we also discuss the relevance of our results in the context of current experiments exploring extreme wave events driven by the modulation instability (e.g. the generation of the so-called rogue waves).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damped Hirota equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incoherent modulation instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lorentzian spectrum damping</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castro, Alejandro J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valido, Antonio A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physica / D</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1980</subfield><subfield code="g">411</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266015166</subfield><subfield code="w">(DE-600)1466587-6</subfield><subfield code="w">(DE-576)074959867</subfield><subfield code="x">1872-8022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.20</subfield><subfield code="j">Nichtlineare Dynamik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">411</subfield></datafield></record></collection>
|
score |
7.4011984 |