Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease
The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here,...
Ausführliche Beschreibung
Autor*in: |
Dicks, Ellen [verfasserIn] van der Flier, Wiesje M. [verfasserIn] Scheltens, Philip [verfasserIn] Barkhof, Frederik [verfasserIn] Tijms, Betty M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Neurobiology of aging - Amsterdam [u.a.] : Elsevier Science, 1980, 94, Seite 71-80 |
---|---|
Übergeordnetes Werk: |
volume:94 ; pages:71-80 |
DOI / URN: |
10.1016/j.neurobiolaging.2020.05.008 |
---|
Katalog-ID: |
ELV004537203 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004537203 | ||
003 | DE-627 | ||
005 | 20230524150600.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neurobiolaging.2020.05.008 |2 doi | |
035 | |a (DE-627)ELV004537203 | ||
035 | |a (ELSEVIER)S0197-4580(20)30163-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q DE-600 |
084 | |a 44.90 |2 bkl | ||
084 | |a 44.68 |2 bkl | ||
100 | 1 | |a Dicks, Ellen |e verfasserin |0 (orcid)0000-0003-2496-1626 |4 aut | |
245 | 1 | 0 | |a Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment. | ||
650 | 4 | |a Alzheimer's disease | |
650 | 4 | |a Amyloid | |
650 | 4 | |a Atrophy | |
650 | 4 | |a Preclinical | |
650 | 4 | |a Single-subject gray matter networks | |
700 | 1 | |a van der Flier, Wiesje M. |e verfasserin |4 aut | |
700 | 1 | |a Scheltens, Philip |e verfasserin |4 aut | |
700 | 1 | |a Barkhof, Frederik |e verfasserin |4 aut | |
700 | 1 | |a Tijms, Betty M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neurobiology of aging |d Amsterdam [u.a.] : Elsevier Science, 1980 |g 94, Seite 71-80 |h Online-Ressource |w (DE-627)306588552 |w (DE-600)1498414-3 |w (DE-576)081953062 |x 1558-1497 |7 nnns |
773 | 1 | 8 | |g volume:94 |g pages:71-80 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 44.90 |j Neurologie |
936 | b | k | |a 44.68 |j Gerontologie |j Geriatrie |
951 | |a AR | ||
952 | |d 94 |h 71-80 |
author_variant |
e d ed d f w m v dfwm dfwmv p s ps f b fb b m t bm bmt |
---|---|
matchkey_str |
article:15581497:2020----::igeujcgamtentokpeituueotcltohipel |
hierarchy_sort_str |
2020 |
bklnumber |
44.90 44.68 |
publishDate |
2020 |
allfields |
10.1016/j.neurobiolaging.2020.05.008 doi (DE-627)ELV004537203 (ELSEVIER)S0197-4580(20)30163-9 DE-627 ger DE-627 rda eng 610 DE-600 44.90 bkl 44.68 bkl Dicks, Ellen verfasserin (orcid)0000-0003-2496-1626 aut Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment. Alzheimer's disease Amyloid Atrophy Preclinical Single-subject gray matter networks van der Flier, Wiesje M. verfasserin aut Scheltens, Philip verfasserin aut Barkhof, Frederik verfasserin aut Tijms, Betty M. verfasserin aut Enthalten in Neurobiology of aging Amsterdam [u.a.] : Elsevier Science, 1980 94, Seite 71-80 Online-Ressource (DE-627)306588552 (DE-600)1498414-3 (DE-576)081953062 1558-1497 nnns volume:94 pages:71-80 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.90 Neurologie 44.68 Gerontologie Geriatrie AR 94 71-80 |
spelling |
10.1016/j.neurobiolaging.2020.05.008 doi (DE-627)ELV004537203 (ELSEVIER)S0197-4580(20)30163-9 DE-627 ger DE-627 rda eng 610 DE-600 44.90 bkl 44.68 bkl Dicks, Ellen verfasserin (orcid)0000-0003-2496-1626 aut Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment. Alzheimer's disease Amyloid Atrophy Preclinical Single-subject gray matter networks van der Flier, Wiesje M. verfasserin aut Scheltens, Philip verfasserin aut Barkhof, Frederik verfasserin aut Tijms, Betty M. verfasserin aut Enthalten in Neurobiology of aging Amsterdam [u.a.] : Elsevier Science, 1980 94, Seite 71-80 Online-Ressource (DE-627)306588552 (DE-600)1498414-3 (DE-576)081953062 1558-1497 nnns volume:94 pages:71-80 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.90 Neurologie 44.68 Gerontologie Geriatrie AR 94 71-80 |
allfields_unstemmed |
10.1016/j.neurobiolaging.2020.05.008 doi (DE-627)ELV004537203 (ELSEVIER)S0197-4580(20)30163-9 DE-627 ger DE-627 rda eng 610 DE-600 44.90 bkl 44.68 bkl Dicks, Ellen verfasserin (orcid)0000-0003-2496-1626 aut Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment. Alzheimer's disease Amyloid Atrophy Preclinical Single-subject gray matter networks van der Flier, Wiesje M. verfasserin aut Scheltens, Philip verfasserin aut Barkhof, Frederik verfasserin aut Tijms, Betty M. verfasserin aut Enthalten in Neurobiology of aging Amsterdam [u.a.] : Elsevier Science, 1980 94, Seite 71-80 Online-Ressource (DE-627)306588552 (DE-600)1498414-3 (DE-576)081953062 1558-1497 nnns volume:94 pages:71-80 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.90 Neurologie 44.68 Gerontologie Geriatrie AR 94 71-80 |
allfieldsGer |
10.1016/j.neurobiolaging.2020.05.008 doi (DE-627)ELV004537203 (ELSEVIER)S0197-4580(20)30163-9 DE-627 ger DE-627 rda eng 610 DE-600 44.90 bkl 44.68 bkl Dicks, Ellen verfasserin (orcid)0000-0003-2496-1626 aut Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment. Alzheimer's disease Amyloid Atrophy Preclinical Single-subject gray matter networks van der Flier, Wiesje M. verfasserin aut Scheltens, Philip verfasserin aut Barkhof, Frederik verfasserin aut Tijms, Betty M. verfasserin aut Enthalten in Neurobiology of aging Amsterdam [u.a.] : Elsevier Science, 1980 94, Seite 71-80 Online-Ressource (DE-627)306588552 (DE-600)1498414-3 (DE-576)081953062 1558-1497 nnns volume:94 pages:71-80 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.90 Neurologie 44.68 Gerontologie Geriatrie AR 94 71-80 |
allfieldsSound |
10.1016/j.neurobiolaging.2020.05.008 doi (DE-627)ELV004537203 (ELSEVIER)S0197-4580(20)30163-9 DE-627 ger DE-627 rda eng 610 DE-600 44.90 bkl 44.68 bkl Dicks, Ellen verfasserin (orcid)0000-0003-2496-1626 aut Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment. Alzheimer's disease Amyloid Atrophy Preclinical Single-subject gray matter networks van der Flier, Wiesje M. verfasserin aut Scheltens, Philip verfasserin aut Barkhof, Frederik verfasserin aut Tijms, Betty M. verfasserin aut Enthalten in Neurobiology of aging Amsterdam [u.a.] : Elsevier Science, 1980 94, Seite 71-80 Online-Ressource (DE-627)306588552 (DE-600)1498414-3 (DE-576)081953062 1558-1497 nnns volume:94 pages:71-80 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 44.90 Neurologie 44.68 Gerontologie Geriatrie AR 94 71-80 |
language |
English |
source |
Enthalten in Neurobiology of aging 94, Seite 71-80 volume:94 pages:71-80 |
sourceStr |
Enthalten in Neurobiology of aging 94, Seite 71-80 volume:94 pages:71-80 |
format_phy_str_mv |
Article |
bklname |
Neurologie Gerontologie Geriatrie |
institution |
findex.gbv.de |
topic_facet |
Alzheimer's disease Amyloid Atrophy Preclinical Single-subject gray matter networks |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Neurobiology of aging |
authorswithroles_txt_mv |
Dicks, Ellen @@aut@@ van der Flier, Wiesje M. @@aut@@ Scheltens, Philip @@aut@@ Barkhof, Frederik @@aut@@ Tijms, Betty M. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306588552 |
dewey-sort |
3610 |
id |
ELV004537203 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004537203</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150600.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neurobiolaging.2020.05.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004537203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0197-4580(20)30163-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dicks, Ellen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2496-1626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alzheimer's disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amyloid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atrophy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Preclinical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-subject gray matter networks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van der Flier, Wiesje M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scheltens, Philip</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barkhof, Frederik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tijms, Betty M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neurobiology of aging</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">94, Seite 71-80</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306588552</subfield><subfield code="w">(DE-600)1498414-3</subfield><subfield code="w">(DE-576)081953062</subfield><subfield code="x">1558-1497</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:94</subfield><subfield code="g">pages:71-80</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.68</subfield><subfield code="j">Gerontologie</subfield><subfield code="j">Geriatrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">94</subfield><subfield code="h">71-80</subfield></datafield></record></collection>
|
author |
Dicks, Ellen |
spellingShingle |
Dicks, Ellen ddc 610 bkl 44.90 bkl 44.68 misc Alzheimer's disease misc Amyloid misc Atrophy misc Preclinical misc Single-subject gray matter networks Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease |
authorStr |
Dicks, Ellen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306588552 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1558-1497 |
topic_title |
610 DE-600 44.90 bkl 44.68 bkl Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease Alzheimer's disease Amyloid Atrophy Preclinical Single-subject gray matter networks |
topic |
ddc 610 bkl 44.90 bkl 44.68 misc Alzheimer's disease misc Amyloid misc Atrophy misc Preclinical misc Single-subject gray matter networks |
topic_unstemmed |
ddc 610 bkl 44.90 bkl 44.68 misc Alzheimer's disease misc Amyloid misc Atrophy misc Preclinical misc Single-subject gray matter networks |
topic_browse |
ddc 610 bkl 44.90 bkl 44.68 misc Alzheimer's disease misc Amyloid misc Atrophy misc Preclinical misc Single-subject gray matter networks |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Neurobiology of aging |
hierarchy_parent_id |
306588552 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Neurobiology of aging |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306588552 (DE-600)1498414-3 (DE-576)081953062 |
title |
Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease |
ctrlnum |
(DE-627)ELV004537203 (ELSEVIER)S0197-4580(20)30163-9 |
title_full |
Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease |
author_sort |
Dicks, Ellen |
journal |
Neurobiology of aging |
journalStr |
Neurobiology of aging |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
71 |
author_browse |
Dicks, Ellen van der Flier, Wiesje M. Scheltens, Philip Barkhof, Frederik Tijms, Betty M. |
container_volume |
94 |
class |
610 DE-600 44.90 bkl 44.68 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Dicks, Ellen |
doi_str_mv |
10.1016/j.neurobiolaging.2020.05.008 |
normlink |
(ORCID)0000-0003-2496-1626 |
normlink_prefix_str_mv |
(orcid)0000-0003-2496-1626 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
single-subject gray matter networks predict future cortical atrophy in preclinical alzheimer's disease |
title_auth |
Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease |
abstract |
The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment. |
abstractGer |
The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment. |
abstract_unstemmed |
The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease |
remote_bool |
true |
author2 |
van der Flier, Wiesje M. Scheltens, Philip Barkhof, Frederik Tijms, Betty M. |
author2Str |
van der Flier, Wiesje M. Scheltens, Philip Barkhof, Frederik Tijms, Betty M. |
ppnlink |
306588552 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.neurobiolaging.2020.05.008 |
up_date |
2024-07-06T23:19:40.989Z |
_version_ |
1803873661474570240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004537203</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150600.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neurobiolaging.2020.05.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004537203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0197-4580(20)30163-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dicks, Ellen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2496-1626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alzheimer's disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amyloid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atrophy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Preclinical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-subject gray matter networks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van der Flier, Wiesje M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scheltens, Philip</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barkhof, Frederik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tijms, Betty M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neurobiology of aging</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">94, Seite 71-80</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306588552</subfield><subfield code="w">(DE-600)1498414-3</subfield><subfield code="w">(DE-576)081953062</subfield><subfield code="x">1558-1497</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:94</subfield><subfield code="g">pages:71-80</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.68</subfield><subfield code="j">Gerontologie</subfield><subfield code="j">Geriatrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">94</subfield><subfield code="h">71-80</subfield></datafield></record></collection>
|
score |
7.402815 |