B-site Y
The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photolum...
Ausführliche Beschreibung
Autor*in: |
Xia, Lei [verfasserIn] Hu, Tao [verfasserIn] Liu, Huan [verfasserIn] Xie, Jiyang [verfasserIn] Asif, Sana Ullah [verfasserIn] Xiong, Fei [verfasserIn] Hu, Wanbiao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of alloys and compounds - Lausanne : Elsevier, 1991, 845 |
---|---|
Übergeordnetes Werk: |
volume:845 |
DOI / URN: |
10.1016/j.jallcom.2020.156131 |
---|
Katalog-ID: |
ELV004539702 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004539702 | ||
003 | DE-627 | ||
005 | 20230524134548.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jallcom.2020.156131 |2 doi | |
035 | |a (DE-627)ELV004539702 | ||
035 | |a (ELSEVIER)S0925-8388(20)32495-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 540 |q DE-600 |
084 | |a 51.54 |2 bkl | ||
084 | |a 33.61 |2 bkl | ||
084 | |a 35.90 |2 bkl | ||
100 | 1 | |a Xia, Lei |e verfasserin |4 aut | |
245 | 1 | 0 | |a B-site Y |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photoluminescence (PL) origins and mechanisms, e.g. in Eu3+doped Ruddlesden-Popper Ca2SnO4 perovskite. In this work, we adopted a B-site Y3+ assisted charge compensation strategy to dope A-site rare earth Eu3+ cations into Ca2SnO4 in order to obtain the pure-phase red-emission phosphors. The Ca2-x Eu x Sn1-y Y y O4 (x = y = 0.01–0.05) phosphors were synthesized via the one-step solid-state reaction. The careful and systematic XRD measurements reveal that only Eu3+ doping cannot give pure-phase Ca2-x Eu x SnO4, while the combination with B-site Y3+ assistance enables achieving pure-phase Ca2-x Eu x Sn1-y Y y O4, which crystallize in an orthorhombic Pbam structure. The STEM-EDX and XPS characterizations indicate the uniform distribution of dopants in the matrix and B-site Y3+ plays a charge compensation role and assists the A-site Eu3+ doping. The charge transfer state (CTS) presenting the energy transfer from matrix to dopants (O2--Eu3+) in excitation spectra was observed with the center at around 275 nm. This excitation wavelength can give the strongest emission signals, i.e. the overall warm-reddish emission. The comprehensive structure and PL/FT-IR/UV spectroscopy analyses indicate that Eu3+ ions substitute for Ca2+ ions at a low symmetric position, and the electric-dipole transition (5D0 → 7F2) is dominant, giving rise to the stronger emission at 617 nm. The optimal PL emission is achieved at doping level x = 0.03, beyond which the concentration quenching occurs, with an origin of electric dipole-dipole interaction of Eu3+ responsible. | ||
650 | 4 | |a Phosphor | |
650 | 4 | |a B-site | |
650 | 4 | |a Charge compensation | |
650 | 4 | |a Ruddlesden-popper | |
700 | 1 | |a Hu, Tao |e verfasserin |4 aut | |
700 | 1 | |a Liu, Huan |e verfasserin |4 aut | |
700 | 1 | |a Xie, Jiyang |e verfasserin |4 aut | |
700 | 1 | |a Asif, Sana Ullah |e verfasserin |4 aut | |
700 | 1 | |a Xiong, Fei |e verfasserin |4 aut | |
700 | 1 | |a Hu, Wanbiao |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of alloys and compounds |d Lausanne : Elsevier, 1991 |g 845 |h Online-Ressource |w (DE-627)320504646 |w (DE-600)2012675-X |w (DE-576)098615009 |7 nnns |
773 | 1 | 8 | |g volume:845 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 51.54 |j Nichteisenmetalle und ihre Legierungen |
936 | b | k | |a 33.61 |j Festkörperphysik |
936 | b | k | |a 35.90 |j Festkörperchemie |
951 | |a AR | ||
952 | |d 845 |
author_variant |
l x lx t h th h l hl j x jx s u a su sua f x fx w h wh |
---|---|
matchkey_str |
xialeihutaoliuhuanxiejiyangasifsanaullah:2020----:s |
hierarchy_sort_str |
2020 |
bklnumber |
51.54 33.61 35.90 |
publishDate |
2020 |
allfields |
10.1016/j.jallcom.2020.156131 doi (DE-627)ELV004539702 (ELSEVIER)S0925-8388(20)32495-6 DE-627 ger DE-627 rda eng 670 540 DE-600 51.54 bkl 33.61 bkl 35.90 bkl Xia, Lei verfasserin aut B-site Y 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photoluminescence (PL) origins and mechanisms, e.g. in Eu3+doped Ruddlesden-Popper Ca2SnO4 perovskite. In this work, we adopted a B-site Y3+ assisted charge compensation strategy to dope A-site rare earth Eu3+ cations into Ca2SnO4 in order to obtain the pure-phase red-emission phosphors. The Ca2-x Eu x Sn1-y Y y O4 (x = y = 0.01–0.05) phosphors were synthesized via the one-step solid-state reaction. The careful and systematic XRD measurements reveal that only Eu3+ doping cannot give pure-phase Ca2-x Eu x SnO4, while the combination with B-site Y3+ assistance enables achieving pure-phase Ca2-x Eu x Sn1-y Y y O4, which crystallize in an orthorhombic Pbam structure. The STEM-EDX and XPS characterizations indicate the uniform distribution of dopants in the matrix and B-site Y3+ plays a charge compensation role and assists the A-site Eu3+ doping. The charge transfer state (CTS) presenting the energy transfer from matrix to dopants (O2--Eu3+) in excitation spectra was observed with the center at around 275 nm. This excitation wavelength can give the strongest emission signals, i.e. the overall warm-reddish emission. The comprehensive structure and PL/FT-IR/UV spectroscopy analyses indicate that Eu3+ ions substitute for Ca2+ ions at a low symmetric position, and the electric-dipole transition (5D0 → 7F2) is dominant, giving rise to the stronger emission at 617 nm. The optimal PL emission is achieved at doping level x = 0.03, beyond which the concentration quenching occurs, with an origin of electric dipole-dipole interaction of Eu3+ responsible. Phosphor B-site Charge compensation Ruddlesden-popper Hu, Tao verfasserin aut Liu, Huan verfasserin aut Xie, Jiyang verfasserin aut Asif, Sana Ullah verfasserin aut Xiong, Fei verfasserin aut Hu, Wanbiao verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 845 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:845 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.54 Nichteisenmetalle und ihre Legierungen 33.61 Festkörperphysik 35.90 Festkörperchemie AR 845 |
spelling |
10.1016/j.jallcom.2020.156131 doi (DE-627)ELV004539702 (ELSEVIER)S0925-8388(20)32495-6 DE-627 ger DE-627 rda eng 670 540 DE-600 51.54 bkl 33.61 bkl 35.90 bkl Xia, Lei verfasserin aut B-site Y 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photoluminescence (PL) origins and mechanisms, e.g. in Eu3+doped Ruddlesden-Popper Ca2SnO4 perovskite. In this work, we adopted a B-site Y3+ assisted charge compensation strategy to dope A-site rare earth Eu3+ cations into Ca2SnO4 in order to obtain the pure-phase red-emission phosphors. The Ca2-x Eu x Sn1-y Y y O4 (x = y = 0.01–0.05) phosphors were synthesized via the one-step solid-state reaction. The careful and systematic XRD measurements reveal that only Eu3+ doping cannot give pure-phase Ca2-x Eu x SnO4, while the combination with B-site Y3+ assistance enables achieving pure-phase Ca2-x Eu x Sn1-y Y y O4, which crystallize in an orthorhombic Pbam structure. The STEM-EDX and XPS characterizations indicate the uniform distribution of dopants in the matrix and B-site Y3+ plays a charge compensation role and assists the A-site Eu3+ doping. The charge transfer state (CTS) presenting the energy transfer from matrix to dopants (O2--Eu3+) in excitation spectra was observed with the center at around 275 nm. This excitation wavelength can give the strongest emission signals, i.e. the overall warm-reddish emission. The comprehensive structure and PL/FT-IR/UV spectroscopy analyses indicate that Eu3+ ions substitute for Ca2+ ions at a low symmetric position, and the electric-dipole transition (5D0 → 7F2) is dominant, giving rise to the stronger emission at 617 nm. The optimal PL emission is achieved at doping level x = 0.03, beyond which the concentration quenching occurs, with an origin of electric dipole-dipole interaction of Eu3+ responsible. Phosphor B-site Charge compensation Ruddlesden-popper Hu, Tao verfasserin aut Liu, Huan verfasserin aut Xie, Jiyang verfasserin aut Asif, Sana Ullah verfasserin aut Xiong, Fei verfasserin aut Hu, Wanbiao verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 845 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:845 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.54 Nichteisenmetalle und ihre Legierungen 33.61 Festkörperphysik 35.90 Festkörperchemie AR 845 |
allfields_unstemmed |
10.1016/j.jallcom.2020.156131 doi (DE-627)ELV004539702 (ELSEVIER)S0925-8388(20)32495-6 DE-627 ger DE-627 rda eng 670 540 DE-600 51.54 bkl 33.61 bkl 35.90 bkl Xia, Lei verfasserin aut B-site Y 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photoluminescence (PL) origins and mechanisms, e.g. in Eu3+doped Ruddlesden-Popper Ca2SnO4 perovskite. In this work, we adopted a B-site Y3+ assisted charge compensation strategy to dope A-site rare earth Eu3+ cations into Ca2SnO4 in order to obtain the pure-phase red-emission phosphors. The Ca2-x Eu x Sn1-y Y y O4 (x = y = 0.01–0.05) phosphors were synthesized via the one-step solid-state reaction. The careful and systematic XRD measurements reveal that only Eu3+ doping cannot give pure-phase Ca2-x Eu x SnO4, while the combination with B-site Y3+ assistance enables achieving pure-phase Ca2-x Eu x Sn1-y Y y O4, which crystallize in an orthorhombic Pbam structure. The STEM-EDX and XPS characterizations indicate the uniform distribution of dopants in the matrix and B-site Y3+ plays a charge compensation role and assists the A-site Eu3+ doping. The charge transfer state (CTS) presenting the energy transfer from matrix to dopants (O2--Eu3+) in excitation spectra was observed with the center at around 275 nm. This excitation wavelength can give the strongest emission signals, i.e. the overall warm-reddish emission. The comprehensive structure and PL/FT-IR/UV spectroscopy analyses indicate that Eu3+ ions substitute for Ca2+ ions at a low symmetric position, and the electric-dipole transition (5D0 → 7F2) is dominant, giving rise to the stronger emission at 617 nm. The optimal PL emission is achieved at doping level x = 0.03, beyond which the concentration quenching occurs, with an origin of electric dipole-dipole interaction of Eu3+ responsible. Phosphor B-site Charge compensation Ruddlesden-popper Hu, Tao verfasserin aut Liu, Huan verfasserin aut Xie, Jiyang verfasserin aut Asif, Sana Ullah verfasserin aut Xiong, Fei verfasserin aut Hu, Wanbiao verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 845 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:845 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.54 Nichteisenmetalle und ihre Legierungen 33.61 Festkörperphysik 35.90 Festkörperchemie AR 845 |
allfieldsGer |
10.1016/j.jallcom.2020.156131 doi (DE-627)ELV004539702 (ELSEVIER)S0925-8388(20)32495-6 DE-627 ger DE-627 rda eng 670 540 DE-600 51.54 bkl 33.61 bkl 35.90 bkl Xia, Lei verfasserin aut B-site Y 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photoluminescence (PL) origins and mechanisms, e.g. in Eu3+doped Ruddlesden-Popper Ca2SnO4 perovskite. In this work, we adopted a B-site Y3+ assisted charge compensation strategy to dope A-site rare earth Eu3+ cations into Ca2SnO4 in order to obtain the pure-phase red-emission phosphors. The Ca2-x Eu x Sn1-y Y y O4 (x = y = 0.01–0.05) phosphors were synthesized via the one-step solid-state reaction. The careful and systematic XRD measurements reveal that only Eu3+ doping cannot give pure-phase Ca2-x Eu x SnO4, while the combination with B-site Y3+ assistance enables achieving pure-phase Ca2-x Eu x Sn1-y Y y O4, which crystallize in an orthorhombic Pbam structure. The STEM-EDX and XPS characterizations indicate the uniform distribution of dopants in the matrix and B-site Y3+ plays a charge compensation role and assists the A-site Eu3+ doping. The charge transfer state (CTS) presenting the energy transfer from matrix to dopants (O2--Eu3+) in excitation spectra was observed with the center at around 275 nm. This excitation wavelength can give the strongest emission signals, i.e. the overall warm-reddish emission. The comprehensive structure and PL/FT-IR/UV spectroscopy analyses indicate that Eu3+ ions substitute for Ca2+ ions at a low symmetric position, and the electric-dipole transition (5D0 → 7F2) is dominant, giving rise to the stronger emission at 617 nm. The optimal PL emission is achieved at doping level x = 0.03, beyond which the concentration quenching occurs, with an origin of electric dipole-dipole interaction of Eu3+ responsible. Phosphor B-site Charge compensation Ruddlesden-popper Hu, Tao verfasserin aut Liu, Huan verfasserin aut Xie, Jiyang verfasserin aut Asif, Sana Ullah verfasserin aut Xiong, Fei verfasserin aut Hu, Wanbiao verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 845 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:845 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.54 Nichteisenmetalle und ihre Legierungen 33.61 Festkörperphysik 35.90 Festkörperchemie AR 845 |
allfieldsSound |
10.1016/j.jallcom.2020.156131 doi (DE-627)ELV004539702 (ELSEVIER)S0925-8388(20)32495-6 DE-627 ger DE-627 rda eng 670 540 DE-600 51.54 bkl 33.61 bkl 35.90 bkl Xia, Lei verfasserin aut B-site Y 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photoluminescence (PL) origins and mechanisms, e.g. in Eu3+doped Ruddlesden-Popper Ca2SnO4 perovskite. In this work, we adopted a B-site Y3+ assisted charge compensation strategy to dope A-site rare earth Eu3+ cations into Ca2SnO4 in order to obtain the pure-phase red-emission phosphors. The Ca2-x Eu x Sn1-y Y y O4 (x = y = 0.01–0.05) phosphors were synthesized via the one-step solid-state reaction. The careful and systematic XRD measurements reveal that only Eu3+ doping cannot give pure-phase Ca2-x Eu x SnO4, while the combination with B-site Y3+ assistance enables achieving pure-phase Ca2-x Eu x Sn1-y Y y O4, which crystallize in an orthorhombic Pbam structure. The STEM-EDX and XPS characterizations indicate the uniform distribution of dopants in the matrix and B-site Y3+ plays a charge compensation role and assists the A-site Eu3+ doping. The charge transfer state (CTS) presenting the energy transfer from matrix to dopants (O2--Eu3+) in excitation spectra was observed with the center at around 275 nm. This excitation wavelength can give the strongest emission signals, i.e. the overall warm-reddish emission. The comprehensive structure and PL/FT-IR/UV spectroscopy analyses indicate that Eu3+ ions substitute for Ca2+ ions at a low symmetric position, and the electric-dipole transition (5D0 → 7F2) is dominant, giving rise to the stronger emission at 617 nm. The optimal PL emission is achieved at doping level x = 0.03, beyond which the concentration quenching occurs, with an origin of electric dipole-dipole interaction of Eu3+ responsible. Phosphor B-site Charge compensation Ruddlesden-popper Hu, Tao verfasserin aut Liu, Huan verfasserin aut Xie, Jiyang verfasserin aut Asif, Sana Ullah verfasserin aut Xiong, Fei verfasserin aut Hu, Wanbiao verfasserin aut Enthalten in Journal of alloys and compounds Lausanne : Elsevier, 1991 845 Online-Ressource (DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 nnns volume:845 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.54 Nichteisenmetalle und ihre Legierungen 33.61 Festkörperphysik 35.90 Festkörperchemie AR 845 |
language |
English |
source |
Enthalten in Journal of alloys and compounds 845 volume:845 |
sourceStr |
Enthalten in Journal of alloys and compounds 845 volume:845 |
format_phy_str_mv |
Article |
bklname |
Nichteisenmetalle und ihre Legierungen Festkörperphysik Festkörperchemie |
institution |
findex.gbv.de |
topic_facet |
Phosphor B-site Charge compensation Ruddlesden-popper |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of alloys and compounds |
authorswithroles_txt_mv |
Xia, Lei @@aut@@ Hu, Tao @@aut@@ Liu, Huan @@aut@@ Xie, Jiyang @@aut@@ Asif, Sana Ullah @@aut@@ Xiong, Fei @@aut@@ Hu, Wanbiao @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320504646 |
dewey-sort |
3670 |
id |
ELV004539702 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004539702</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524134548.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2020.156131</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004539702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(20)32495-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xia, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">B-site Y</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photoluminescence (PL) origins and mechanisms, e.g. in Eu3+doped Ruddlesden-Popper Ca2SnO4 perovskite. In this work, we adopted a B-site Y3+ assisted charge compensation strategy to dope A-site rare earth Eu3+ cations into Ca2SnO4 in order to obtain the pure-phase red-emission phosphors. The Ca2-x Eu x Sn1-y Y y O4 (x = y = 0.01–0.05) phosphors were synthesized via the one-step solid-state reaction. The careful and systematic XRD measurements reveal that only Eu3+ doping cannot give pure-phase Ca2-x Eu x SnO4, while the combination with B-site Y3+ assistance enables achieving pure-phase Ca2-x Eu x Sn1-y Y y O4, which crystallize in an orthorhombic Pbam structure. The STEM-EDX and XPS characterizations indicate the uniform distribution of dopants in the matrix and B-site Y3+ plays a charge compensation role and assists the A-site Eu3+ doping. The charge transfer state (CTS) presenting the energy transfer from matrix to dopants (O2--Eu3+) in excitation spectra was observed with the center at around 275 nm. This excitation wavelength can give the strongest emission signals, i.e. the overall warm-reddish emission. The comprehensive structure and PL/FT-IR/UV spectroscopy analyses indicate that Eu3+ ions substitute for Ca2+ ions at a low symmetric position, and the electric-dipole transition (5D0 → 7F2) is dominant, giving rise to the stronger emission at 617 nm. The optimal PL emission is achieved at doping level x = 0.03, beyond which the concentration quenching occurs, with an origin of electric dipole-dipole interaction of Eu3+ responsible.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">B-site</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Charge compensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ruddlesden-popper</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Jiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Asif, Sana Ullah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Wanbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of alloys and compounds</subfield><subfield code="d">Lausanne : Elsevier, 1991</subfield><subfield code="g">845</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504646</subfield><subfield code="w">(DE-600)2012675-X</subfield><subfield code="w">(DE-576)098615009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:845</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.54</subfield><subfield code="j">Nichteisenmetalle und ihre Legierungen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">845</subfield></datafield></record></collection>
|
author |
Xia, Lei |
spellingShingle |
Xia, Lei ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Phosphor misc B-site misc Charge compensation misc Ruddlesden-popper B-site Y |
authorStr |
Xia, Lei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504646 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 540 DE-600 51.54 bkl 33.61 bkl 35.90 bkl B-site Y Phosphor B-site Charge compensation Ruddlesden-popper |
topic |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Phosphor misc B-site misc Charge compensation misc Ruddlesden-popper |
topic_unstemmed |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Phosphor misc B-site misc Charge compensation misc Ruddlesden-popper |
topic_browse |
ddc 670 bkl 51.54 bkl 33.61 bkl 35.90 misc Phosphor misc B-site misc Charge compensation misc Ruddlesden-popper |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of alloys and compounds |
hierarchy_parent_id |
320504646 |
dewey-tens |
670 - Manufacturing 540 - Chemistry |
hierarchy_top_title |
Journal of alloys and compounds |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504646 (DE-600)2012675-X (DE-576)098615009 |
title |
B-site Y |
ctrlnum |
(DE-627)ELV004539702 (ELSEVIER)S0925-8388(20)32495-6 |
title_full |
B-site Y |
author_sort |
Xia, Lei |
journal |
Journal of alloys and compounds |
journalStr |
Journal of alloys and compounds |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Xia, Lei Hu, Tao Liu, Huan Xie, Jiyang Asif, Sana Ullah Xiong, Fei Hu, Wanbiao |
container_volume |
845 |
class |
670 540 DE-600 51.54 bkl 33.61 bkl 35.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xia, Lei |
doi_str_mv |
10.1016/j.jallcom.2020.156131 |
dewey-full |
670 540 |
author2-role |
verfasserin |
title_sort |
b-site y |
title_auth |
B-site Y |
abstract |
The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photoluminescence (PL) origins and mechanisms, e.g. in Eu3+doped Ruddlesden-Popper Ca2SnO4 perovskite. In this work, we adopted a B-site Y3+ assisted charge compensation strategy to dope A-site rare earth Eu3+ cations into Ca2SnO4 in order to obtain the pure-phase red-emission phosphors. The Ca2-x Eu x Sn1-y Y y O4 (x = y = 0.01–0.05) phosphors were synthesized via the one-step solid-state reaction. The careful and systematic XRD measurements reveal that only Eu3+ doping cannot give pure-phase Ca2-x Eu x SnO4, while the combination with B-site Y3+ assistance enables achieving pure-phase Ca2-x Eu x Sn1-y Y y O4, which crystallize in an orthorhombic Pbam structure. The STEM-EDX and XPS characterizations indicate the uniform distribution of dopants in the matrix and B-site Y3+ plays a charge compensation role and assists the A-site Eu3+ doping. The charge transfer state (CTS) presenting the energy transfer from matrix to dopants (O2--Eu3+) in excitation spectra was observed with the center at around 275 nm. This excitation wavelength can give the strongest emission signals, i.e. the overall warm-reddish emission. The comprehensive structure and PL/FT-IR/UV spectroscopy analyses indicate that Eu3+ ions substitute for Ca2+ ions at a low symmetric position, and the electric-dipole transition (5D0 → 7F2) is dominant, giving rise to the stronger emission at 617 nm. The optimal PL emission is achieved at doping level x = 0.03, beyond which the concentration quenching occurs, with an origin of electric dipole-dipole interaction of Eu3+ responsible. |
abstractGer |
The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photoluminescence (PL) origins and mechanisms, e.g. in Eu3+doped Ruddlesden-Popper Ca2SnO4 perovskite. In this work, we adopted a B-site Y3+ assisted charge compensation strategy to dope A-site rare earth Eu3+ cations into Ca2SnO4 in order to obtain the pure-phase red-emission phosphors. The Ca2-x Eu x Sn1-y Y y O4 (x = y = 0.01–0.05) phosphors were synthesized via the one-step solid-state reaction. The careful and systematic XRD measurements reveal that only Eu3+ doping cannot give pure-phase Ca2-x Eu x SnO4, while the combination with B-site Y3+ assistance enables achieving pure-phase Ca2-x Eu x Sn1-y Y y O4, which crystallize in an orthorhombic Pbam structure. The STEM-EDX and XPS characterizations indicate the uniform distribution of dopants in the matrix and B-site Y3+ plays a charge compensation role and assists the A-site Eu3+ doping. The charge transfer state (CTS) presenting the energy transfer from matrix to dopants (O2--Eu3+) in excitation spectra was observed with the center at around 275 nm. This excitation wavelength can give the strongest emission signals, i.e. the overall warm-reddish emission. The comprehensive structure and PL/FT-IR/UV spectroscopy analyses indicate that Eu3+ ions substitute for Ca2+ ions at a low symmetric position, and the electric-dipole transition (5D0 → 7F2) is dominant, giving rise to the stronger emission at 617 nm. The optimal PL emission is achieved at doping level x = 0.03, beyond which the concentration quenching occurs, with an origin of electric dipole-dipole interaction of Eu3+ responsible. |
abstract_unstemmed |
The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photoluminescence (PL) origins and mechanisms, e.g. in Eu3+doped Ruddlesden-Popper Ca2SnO4 perovskite. In this work, we adopted a B-site Y3+ assisted charge compensation strategy to dope A-site rare earth Eu3+ cations into Ca2SnO4 in order to obtain the pure-phase red-emission phosphors. The Ca2-x Eu x Sn1-y Y y O4 (x = y = 0.01–0.05) phosphors were synthesized via the one-step solid-state reaction. The careful and systematic XRD measurements reveal that only Eu3+ doping cannot give pure-phase Ca2-x Eu x SnO4, while the combination with B-site Y3+ assistance enables achieving pure-phase Ca2-x Eu x Sn1-y Y y O4, which crystallize in an orthorhombic Pbam structure. The STEM-EDX and XPS characterizations indicate the uniform distribution of dopants in the matrix and B-site Y3+ plays a charge compensation role and assists the A-site Eu3+ doping. The charge transfer state (CTS) presenting the energy transfer from matrix to dopants (O2--Eu3+) in excitation spectra was observed with the center at around 275 nm. This excitation wavelength can give the strongest emission signals, i.e. the overall warm-reddish emission. The comprehensive structure and PL/FT-IR/UV spectroscopy analyses indicate that Eu3+ ions substitute for Ca2+ ions at a low symmetric position, and the electric-dipole transition (5D0 → 7F2) is dominant, giving rise to the stronger emission at 617 nm. The optimal PL emission is achieved at doping level x = 0.03, beyond which the concentration quenching occurs, with an origin of electric dipole-dipole interaction of Eu3+ responsible. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
B-site Y |
remote_bool |
true |
author2 |
Hu, Tao Liu, Huan Xie, Jiyang Asif, Sana Ullah Xiong, Fei Hu, Wanbiao |
author2Str |
Hu, Tao Liu, Huan Xie, Jiyang Asif, Sana Ullah Xiong, Fei Hu, Wanbiao |
ppnlink |
320504646 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jallcom.2020.156131 |
up_date |
2024-07-06T23:20:11.426Z |
_version_ |
1803873693391126528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004539702</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524134548.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2020.156131</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004539702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(20)32495-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.54</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xia, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">B-site Y</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The rare-earth doped phosphors are widely used in luminous applications. As necessary activators, the involved rare-earth ions are quite low in amount. This may lead to the unsuccessful incorporation or existence of secondary impurity, which, in turn, causes the incorrect interpretations in photoluminescence (PL) origins and mechanisms, e.g. in Eu3+doped Ruddlesden-Popper Ca2SnO4 perovskite. In this work, we adopted a B-site Y3+ assisted charge compensation strategy to dope A-site rare earth Eu3+ cations into Ca2SnO4 in order to obtain the pure-phase red-emission phosphors. The Ca2-x Eu x Sn1-y Y y O4 (x = y = 0.01–0.05) phosphors were synthesized via the one-step solid-state reaction. The careful and systematic XRD measurements reveal that only Eu3+ doping cannot give pure-phase Ca2-x Eu x SnO4, while the combination with B-site Y3+ assistance enables achieving pure-phase Ca2-x Eu x Sn1-y Y y O4, which crystallize in an orthorhombic Pbam structure. The STEM-EDX and XPS characterizations indicate the uniform distribution of dopants in the matrix and B-site Y3+ plays a charge compensation role and assists the A-site Eu3+ doping. The charge transfer state (CTS) presenting the energy transfer from matrix to dopants (O2--Eu3+) in excitation spectra was observed with the center at around 275 nm. This excitation wavelength can give the strongest emission signals, i.e. the overall warm-reddish emission. The comprehensive structure and PL/FT-IR/UV spectroscopy analyses indicate that Eu3+ ions substitute for Ca2+ ions at a low symmetric position, and the electric-dipole transition (5D0 → 7F2) is dominant, giving rise to the stronger emission at 617 nm. The optimal PL emission is achieved at doping level x = 0.03, beyond which the concentration quenching occurs, with an origin of electric dipole-dipole interaction of Eu3+ responsible.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">B-site</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Charge compensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ruddlesden-popper</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Jiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Asif, Sana Ullah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Wanbiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of alloys and compounds</subfield><subfield code="d">Lausanne : Elsevier, 1991</subfield><subfield code="g">845</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504646</subfield><subfield code="w">(DE-600)2012675-X</subfield><subfield code="w">(DE-576)098615009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:845</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.54</subfield><subfield code="j">Nichteisenmetalle und ihre Legierungen</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">845</subfield></datafield></record></collection>
|
score |
7.400791 |