Performance enhancement of submerged wave energy device using bistability
The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in oth...
Ausführliche Beschreibung
Autor*in: |
Schubert, Benjamin W. [verfasserIn] Robertson, William S.P. [verfasserIn] Cazzolato, Benjamin S. [verfasserIn] Ghayesh, Mergen H. [verfasserIn] Sergiienko, Nataliia Y. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Ocean engineering - Amsterdam [u.a.] : Elsevier Science, 1970, 213 |
---|---|
Übergeordnetes Werk: |
volume:213 |
DOI / URN: |
10.1016/j.oceaneng.2020.107816 |
---|
Katalog-ID: |
ELV004565584 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004565584 | ||
003 | DE-627 | ||
005 | 20230524125346.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.oceaneng.2020.107816 |2 doi | |
035 | |a (DE-627)ELV004565584 | ||
035 | |a (ELSEVIER)S0029-8018(20)30790-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Schubert, Benjamin W. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Performance enhancement of submerged wave energy device using bistability |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in other energy harvesting applications, have improved the amount of power generated. For wave energy converters, most theoretical models with bistability were limited to one-degree-of-freedom, neglect nonlinearities such as viscous drag, and are excited by unrealistic sinusoidal waves. Such simplifications lead to neglecting features such as modal interactions. The presented model investigated a three-degree-of-freedom submerged point absorber with bistability subjected to regular and irregular waves. The bistable mechanism was an adjustable magnetic model such that a range of potential profiles were examined and parameterised, for generality, by features common between mechanisms. For this device, bistability may be used to obtain near optimal results and was suitably robust for changing ocean conditions. Regions of improvement were identified in terms of the changing natural frequency due to a nonlinear stiffness, and a phase matching property. In varying sea-states, a selected bistable condition demonstrated a 10–20% improvement in power production. The consistency implies that semi-active elements may be able to adjust the bistability to enhance power production. | ||
650 | 4 | |a Bistable | |
650 | 4 | |a Performance enhancement | |
650 | 4 | |a Passive control | |
650 | 4 | |a Submerged point absorber | |
700 | 1 | |a Robertson, William S.P. |e verfasserin |4 aut | |
700 | 1 | |a Cazzolato, Benjamin S. |e verfasserin |4 aut | |
700 | 1 | |a Ghayesh, Mergen H. |e verfasserin |4 aut | |
700 | 1 | |a Sergiienko, Nataliia Y. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ocean engineering |d Amsterdam [u.a.] : Elsevier Science, 1970 |g 213 |h Online-Ressource |w (DE-627)30658977X |w (DE-600)1498543-3 |w (DE-576)259484164 |x 0029-8018 |7 nnns |
773 | 1 | 8 | |g volume:213 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.92 |j Meerestechnik |
951 | |a AR | ||
952 | |d 213 |
author_variant |
b w s bw bws w s r ws wsr b s c bs bsc m h g mh mhg n y s ny nys |
---|---|
matchkey_str |
article:00298018:2020----::efracehneetfumrewveegdvc |
hierarchy_sort_str |
2020 |
bklnumber |
50.92 |
publishDate |
2020 |
allfields |
10.1016/j.oceaneng.2020.107816 doi (DE-627)ELV004565584 (ELSEVIER)S0029-8018(20)30790-3 DE-627 ger DE-627 rda eng 690 DE-600 50.92 bkl Schubert, Benjamin W. verfasserin aut Performance enhancement of submerged wave energy device using bistability 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in other energy harvesting applications, have improved the amount of power generated. For wave energy converters, most theoretical models with bistability were limited to one-degree-of-freedom, neglect nonlinearities such as viscous drag, and are excited by unrealistic sinusoidal waves. Such simplifications lead to neglecting features such as modal interactions. The presented model investigated a three-degree-of-freedom submerged point absorber with bistability subjected to regular and irregular waves. The bistable mechanism was an adjustable magnetic model such that a range of potential profiles were examined and parameterised, for generality, by features common between mechanisms. For this device, bistability may be used to obtain near optimal results and was suitably robust for changing ocean conditions. Regions of improvement were identified in terms of the changing natural frequency due to a nonlinear stiffness, and a phase matching property. In varying sea-states, a selected bistable condition demonstrated a 10–20% improvement in power production. The consistency implies that semi-active elements may be able to adjust the bistability to enhance power production. Bistable Performance enhancement Passive control Submerged point absorber Robertson, William S.P. verfasserin aut Cazzolato, Benjamin S. verfasserin aut Ghayesh, Mergen H. verfasserin aut Sergiienko, Nataliia Y. verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 213 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:213 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.92 Meerestechnik AR 213 |
spelling |
10.1016/j.oceaneng.2020.107816 doi (DE-627)ELV004565584 (ELSEVIER)S0029-8018(20)30790-3 DE-627 ger DE-627 rda eng 690 DE-600 50.92 bkl Schubert, Benjamin W. verfasserin aut Performance enhancement of submerged wave energy device using bistability 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in other energy harvesting applications, have improved the amount of power generated. For wave energy converters, most theoretical models with bistability were limited to one-degree-of-freedom, neglect nonlinearities such as viscous drag, and are excited by unrealistic sinusoidal waves. Such simplifications lead to neglecting features such as modal interactions. The presented model investigated a three-degree-of-freedom submerged point absorber with bistability subjected to regular and irregular waves. The bistable mechanism was an adjustable magnetic model such that a range of potential profiles were examined and parameterised, for generality, by features common between mechanisms. For this device, bistability may be used to obtain near optimal results and was suitably robust for changing ocean conditions. Regions of improvement were identified in terms of the changing natural frequency due to a nonlinear stiffness, and a phase matching property. In varying sea-states, a selected bistable condition demonstrated a 10–20% improvement in power production. The consistency implies that semi-active elements may be able to adjust the bistability to enhance power production. Bistable Performance enhancement Passive control Submerged point absorber Robertson, William S.P. verfasserin aut Cazzolato, Benjamin S. verfasserin aut Ghayesh, Mergen H. verfasserin aut Sergiienko, Nataliia Y. verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 213 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:213 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.92 Meerestechnik AR 213 |
allfields_unstemmed |
10.1016/j.oceaneng.2020.107816 doi (DE-627)ELV004565584 (ELSEVIER)S0029-8018(20)30790-3 DE-627 ger DE-627 rda eng 690 DE-600 50.92 bkl Schubert, Benjamin W. verfasserin aut Performance enhancement of submerged wave energy device using bistability 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in other energy harvesting applications, have improved the amount of power generated. For wave energy converters, most theoretical models with bistability were limited to one-degree-of-freedom, neglect nonlinearities such as viscous drag, and are excited by unrealistic sinusoidal waves. Such simplifications lead to neglecting features such as modal interactions. The presented model investigated a three-degree-of-freedom submerged point absorber with bistability subjected to regular and irregular waves. The bistable mechanism was an adjustable magnetic model such that a range of potential profiles were examined and parameterised, for generality, by features common between mechanisms. For this device, bistability may be used to obtain near optimal results and was suitably robust for changing ocean conditions. Regions of improvement were identified in terms of the changing natural frequency due to a nonlinear stiffness, and a phase matching property. In varying sea-states, a selected bistable condition demonstrated a 10–20% improvement in power production. The consistency implies that semi-active elements may be able to adjust the bistability to enhance power production. Bistable Performance enhancement Passive control Submerged point absorber Robertson, William S.P. verfasserin aut Cazzolato, Benjamin S. verfasserin aut Ghayesh, Mergen H. verfasserin aut Sergiienko, Nataliia Y. verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 213 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:213 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.92 Meerestechnik AR 213 |
allfieldsGer |
10.1016/j.oceaneng.2020.107816 doi (DE-627)ELV004565584 (ELSEVIER)S0029-8018(20)30790-3 DE-627 ger DE-627 rda eng 690 DE-600 50.92 bkl Schubert, Benjamin W. verfasserin aut Performance enhancement of submerged wave energy device using bistability 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in other energy harvesting applications, have improved the amount of power generated. For wave energy converters, most theoretical models with bistability were limited to one-degree-of-freedom, neglect nonlinearities such as viscous drag, and are excited by unrealistic sinusoidal waves. Such simplifications lead to neglecting features such as modal interactions. The presented model investigated a three-degree-of-freedom submerged point absorber with bistability subjected to regular and irregular waves. The bistable mechanism was an adjustable magnetic model such that a range of potential profiles were examined and parameterised, for generality, by features common between mechanisms. For this device, bistability may be used to obtain near optimal results and was suitably robust for changing ocean conditions. Regions of improvement were identified in terms of the changing natural frequency due to a nonlinear stiffness, and a phase matching property. In varying sea-states, a selected bistable condition demonstrated a 10–20% improvement in power production. The consistency implies that semi-active elements may be able to adjust the bistability to enhance power production. Bistable Performance enhancement Passive control Submerged point absorber Robertson, William S.P. verfasserin aut Cazzolato, Benjamin S. verfasserin aut Ghayesh, Mergen H. verfasserin aut Sergiienko, Nataliia Y. verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 213 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:213 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.92 Meerestechnik AR 213 |
allfieldsSound |
10.1016/j.oceaneng.2020.107816 doi (DE-627)ELV004565584 (ELSEVIER)S0029-8018(20)30790-3 DE-627 ger DE-627 rda eng 690 DE-600 50.92 bkl Schubert, Benjamin W. verfasserin aut Performance enhancement of submerged wave energy device using bistability 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in other energy harvesting applications, have improved the amount of power generated. For wave energy converters, most theoretical models with bistability were limited to one-degree-of-freedom, neglect nonlinearities such as viscous drag, and are excited by unrealistic sinusoidal waves. Such simplifications lead to neglecting features such as modal interactions. The presented model investigated a three-degree-of-freedom submerged point absorber with bistability subjected to regular and irregular waves. The bistable mechanism was an adjustable magnetic model such that a range of potential profiles were examined and parameterised, for generality, by features common between mechanisms. For this device, bistability may be used to obtain near optimal results and was suitably robust for changing ocean conditions. Regions of improvement were identified in terms of the changing natural frequency due to a nonlinear stiffness, and a phase matching property. In varying sea-states, a selected bistable condition demonstrated a 10–20% improvement in power production. The consistency implies that semi-active elements may be able to adjust the bistability to enhance power production. Bistable Performance enhancement Passive control Submerged point absorber Robertson, William S.P. verfasserin aut Cazzolato, Benjamin S. verfasserin aut Ghayesh, Mergen H. verfasserin aut Sergiienko, Nataliia Y. verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 213 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:213 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.92 Meerestechnik AR 213 |
language |
English |
source |
Enthalten in Ocean engineering 213 volume:213 |
sourceStr |
Enthalten in Ocean engineering 213 volume:213 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Bistable Performance enhancement Passive control Submerged point absorber |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Ocean engineering |
authorswithroles_txt_mv |
Schubert, Benjamin W. @@aut@@ Robertson, William S.P. @@aut@@ Cazzolato, Benjamin S. @@aut@@ Ghayesh, Mergen H. @@aut@@ Sergiienko, Nataliia Y. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
30658977X |
dewey-sort |
3690 |
id |
ELV004565584 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004565584</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524125346.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2020.107816</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004565584</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(20)30790-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schubert, Benjamin W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance enhancement of submerged wave energy device using bistability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in other energy harvesting applications, have improved the amount of power generated. For wave energy converters, most theoretical models with bistability were limited to one-degree-of-freedom, neglect nonlinearities such as viscous drag, and are excited by unrealistic sinusoidal waves. Such simplifications lead to neglecting features such as modal interactions. The presented model investigated a three-degree-of-freedom submerged point absorber with bistability subjected to regular and irregular waves. The bistable mechanism was an adjustable magnetic model such that a range of potential profiles were examined and parameterised, for generality, by features common between mechanisms. For this device, bistability may be used to obtain near optimal results and was suitably robust for changing ocean conditions. Regions of improvement were identified in terms of the changing natural frequency due to a nonlinear stiffness, and a phase matching property. In varying sea-states, a selected bistable condition demonstrated a 10–20% improvement in power production. The consistency implies that semi-active elements may be able to adjust the bistability to enhance power production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bistable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Submerged point absorber</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robertson, William S.P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cazzolato, Benjamin S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghayesh, Mergen H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sergiienko, Nataliia Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">213</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30658977X</subfield><subfield code="w">(DE-600)1498543-3</subfield><subfield code="w">(DE-576)259484164</subfield><subfield code="x">0029-8018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">213</subfield></datafield></record></collection>
|
author |
Schubert, Benjamin W. |
spellingShingle |
Schubert, Benjamin W. ddc 690 bkl 50.92 misc Bistable misc Performance enhancement misc Passive control misc Submerged point absorber Performance enhancement of submerged wave energy device using bistability |
authorStr |
Schubert, Benjamin W. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)30658977X |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0029-8018 |
topic_title |
690 DE-600 50.92 bkl Performance enhancement of submerged wave energy device using bistability Bistable Performance enhancement Passive control Submerged point absorber |
topic |
ddc 690 bkl 50.92 misc Bistable misc Performance enhancement misc Passive control misc Submerged point absorber |
topic_unstemmed |
ddc 690 bkl 50.92 misc Bistable misc Performance enhancement misc Passive control misc Submerged point absorber |
topic_browse |
ddc 690 bkl 50.92 misc Bistable misc Performance enhancement misc Passive control misc Submerged point absorber |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ocean engineering |
hierarchy_parent_id |
30658977X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Ocean engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 |
title |
Performance enhancement of submerged wave energy device using bistability |
ctrlnum |
(DE-627)ELV004565584 (ELSEVIER)S0029-8018(20)30790-3 |
title_full |
Performance enhancement of submerged wave energy device using bistability |
author_sort |
Schubert, Benjamin W. |
journal |
Ocean engineering |
journalStr |
Ocean engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Schubert, Benjamin W. Robertson, William S.P. Cazzolato, Benjamin S. Ghayesh, Mergen H. Sergiienko, Nataliia Y. |
container_volume |
213 |
class |
690 DE-600 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Schubert, Benjamin W. |
doi_str_mv |
10.1016/j.oceaneng.2020.107816 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
performance enhancement of submerged wave energy device using bistability |
title_auth |
Performance enhancement of submerged wave energy device using bistability |
abstract |
The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in other energy harvesting applications, have improved the amount of power generated. For wave energy converters, most theoretical models with bistability were limited to one-degree-of-freedom, neglect nonlinearities such as viscous drag, and are excited by unrealistic sinusoidal waves. Such simplifications lead to neglecting features such as modal interactions. The presented model investigated a three-degree-of-freedom submerged point absorber with bistability subjected to regular and irregular waves. The bistable mechanism was an adjustable magnetic model such that a range of potential profiles were examined and parameterised, for generality, by features common between mechanisms. For this device, bistability may be used to obtain near optimal results and was suitably robust for changing ocean conditions. Regions of improvement were identified in terms of the changing natural frequency due to a nonlinear stiffness, and a phase matching property. In varying sea-states, a selected bistable condition demonstrated a 10–20% improvement in power production. The consistency implies that semi-active elements may be able to adjust the bistability to enhance power production. |
abstractGer |
The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in other energy harvesting applications, have improved the amount of power generated. For wave energy converters, most theoretical models with bistability were limited to one-degree-of-freedom, neglect nonlinearities such as viscous drag, and are excited by unrealistic sinusoidal waves. Such simplifications lead to neglecting features such as modal interactions. The presented model investigated a three-degree-of-freedom submerged point absorber with bistability subjected to regular and irregular waves. The bistable mechanism was an adjustable magnetic model such that a range of potential profiles were examined and parameterised, for generality, by features common between mechanisms. For this device, bistability may be used to obtain near optimal results and was suitably robust for changing ocean conditions. Regions of improvement were identified in terms of the changing natural frequency due to a nonlinear stiffness, and a phase matching property. In varying sea-states, a selected bistable condition demonstrated a 10–20% improvement in power production. The consistency implies that semi-active elements may be able to adjust the bistability to enhance power production. |
abstract_unstemmed |
The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in other energy harvesting applications, have improved the amount of power generated. For wave energy converters, most theoretical models with bistability were limited to one-degree-of-freedom, neglect nonlinearities such as viscous drag, and are excited by unrealistic sinusoidal waves. Such simplifications lead to neglecting features such as modal interactions. The presented model investigated a three-degree-of-freedom submerged point absorber with bistability subjected to regular and irregular waves. The bistable mechanism was an adjustable magnetic model such that a range of potential profiles were examined and parameterised, for generality, by features common between mechanisms. For this device, bistability may be used to obtain near optimal results and was suitably robust for changing ocean conditions. Regions of improvement were identified in terms of the changing natural frequency due to a nonlinear stiffness, and a phase matching property. In varying sea-states, a selected bistable condition demonstrated a 10–20% improvement in power production. The consistency implies that semi-active elements may be able to adjust the bistability to enhance power production. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Performance enhancement of submerged wave energy device using bistability |
remote_bool |
true |
author2 |
Robertson, William S.P. Cazzolato, Benjamin S. Ghayesh, Mergen H. Sergiienko, Nataliia Y. |
author2Str |
Robertson, William S.P. Cazzolato, Benjamin S. Ghayesh, Mergen H. Sergiienko, Nataliia Y. |
ppnlink |
30658977X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.oceaneng.2020.107816 |
up_date |
2024-07-06T23:25:18.637Z |
_version_ |
1803874015525208064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004565584</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524125346.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2020.107816</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004565584</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(20)30790-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schubert, Benjamin W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance enhancement of submerged wave energy device using bistability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The performance of a submerged cylindrical point absorbing wave energy converter was explored under the addition of different nonlinear stiffness (bistable) conditions. The limitations of previous studies were addressed by incorporating higher-fidelity modelling. Devices employing bistability in other energy harvesting applications, have improved the amount of power generated. For wave energy converters, most theoretical models with bistability were limited to one-degree-of-freedom, neglect nonlinearities such as viscous drag, and are excited by unrealistic sinusoidal waves. Such simplifications lead to neglecting features such as modal interactions. The presented model investigated a three-degree-of-freedom submerged point absorber with bistability subjected to regular and irregular waves. The bistable mechanism was an adjustable magnetic model such that a range of potential profiles were examined and parameterised, for generality, by features common between mechanisms. For this device, bistability may be used to obtain near optimal results and was suitably robust for changing ocean conditions. Regions of improvement were identified in terms of the changing natural frequency due to a nonlinear stiffness, and a phase matching property. In varying sea-states, a selected bistable condition demonstrated a 10–20% improvement in power production. The consistency implies that semi-active elements may be able to adjust the bistability to enhance power production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bistable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Submerged point absorber</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robertson, William S.P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cazzolato, Benjamin S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghayesh, Mergen H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sergiienko, Nataliia Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">213</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30658977X</subfield><subfield code="w">(DE-600)1498543-3</subfield><subfield code="w">(DE-576)259484164</subfield><subfield code="x">0029-8018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">213</subfield></datafield></record></collection>
|
score |
7.4011345 |