Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau
Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity...
Ausführliche Beschreibung
Autor*in: |
Sun, Hui [verfasserIn] Wang, Yunqiang [verfasserIn] Zhao, Yali [verfasserIn] Zhang, Pingping [verfasserIn] Song, Yi [verfasserIn] He, Meina [verfasserIn] Zhang, Chencheng [verfasserIn] Tong, Yongping [verfasserIn] Zhou, Jingxiong [verfasserIn] Qi, Lijun [verfasserIn] Xu, Lan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of hydrology - Amsterdam [u.a.] : Elsevier, 1963, 589 |
---|---|
Übergeordnetes Werk: |
volume:589 |
DOI / URN: |
10.1016/j.jhydrol.2020.125132 |
---|
Katalog-ID: |
ELV00457026X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00457026X | ||
003 | DE-627 | ||
005 | 20230524144344.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jhydrol.2020.125132 |2 doi | |
035 | |a (DE-627)ELV00457026X | ||
035 | |a (ELSEVIER)S0022-1694(20)30592-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 38.85 |2 bkl | ||
100 | 1 | |a Sun, Hui |e verfasserin |0 (orcid)0000-0002-9866-1792 |4 aut | |
245 | 1 | 0 | |a Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity tomography (ERT) for indirectly determining θ through the development of prediction models for loessial regions under different site conditions (i.e., soil texture, land use, soil depth, and dry/wet conditions). We obtained 2769 pairs of electrical resistivity (ρ) and θ datasets using ERT (53 sites) and a neutron probe (69 access tubes) on the Chinese Loess Plateau. We built linear and nonlinear models correlating ρ and θ and selected the best model according to the coefficient of determination (R 2) and root-mean-square error (RMSE). The uncertainty and sensitivity of ERT-derived θ were further evaluated and acceptable results were obtained. The new models correlating ρ and θ under different site conditions are the first set of models based on field data from a loessial region, and their acceptable performance makes them applicable for measuring different soil parameters in the Loess Plateau and possibly other loessial regions around the world. | ||
650 | 4 | |a Deep soil | |
650 | 4 | |a Electrical resistivity | |
650 | 4 | |a Land use | |
650 | 4 | |a Loessial soil | |
650 | 4 | |a Soil condition | |
650 | 4 | |a Soil water content | |
700 | 1 | |a Wang, Yunqiang |e verfasserin |0 (orcid)0000-0003-3380-549X |4 aut | |
700 | 1 | |a Zhao, Yali |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Pingping |e verfasserin |0 (orcid)0000-0003-4555-9708 |4 aut | |
700 | 1 | |a Song, Yi |e verfasserin |4 aut | |
700 | 1 | |a He, Meina |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Chencheng |e verfasserin |4 aut | |
700 | 1 | |a Tong, Yongping |e verfasserin |4 aut | |
700 | 1 | |a Zhou, Jingxiong |e verfasserin |4 aut | |
700 | 1 | |a Qi, Lijun |e verfasserin |4 aut | |
700 | 1 | |a Xu, Lan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of hydrology |d Amsterdam [u.a.] : Elsevier, 1963 |g 589 |h Online-Ressource |w (DE-627)268761817 |w (DE-600)1473173-3 |w (DE-576)077610628 |x 1879-2707 |7 nnns |
773 | 1 | 8 | |g volume:589 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.85 |j Hydrologie: Allgemeines |
951 | |a AR | ||
952 | |d 589 |
author_variant |
h s hs y w yw y z yz p z pz y s ys m h mh c z cz y t yt j z jz l q lq l x lx |
---|---|
matchkey_str |
article:18792707:2020----::sesnteauoeetiarssiiyeiesiwtrotnisgtfoaaetditer |
hierarchy_sort_str |
2020 |
bklnumber |
38.85 |
publishDate |
2020 |
allfields |
10.1016/j.jhydrol.2020.125132 doi (DE-627)ELV00457026X (ELSEVIER)S0022-1694(20)30592-8 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Sun, Hui verfasserin (orcid)0000-0002-9866-1792 aut Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity tomography (ERT) for indirectly determining θ through the development of prediction models for loessial regions under different site conditions (i.e., soil texture, land use, soil depth, and dry/wet conditions). We obtained 2769 pairs of electrical resistivity (ρ) and θ datasets using ERT (53 sites) and a neutron probe (69 access tubes) on the Chinese Loess Plateau. We built linear and nonlinear models correlating ρ and θ and selected the best model according to the coefficient of determination (R 2) and root-mean-square error (RMSE). The uncertainty and sensitivity of ERT-derived θ were further evaluated and acceptable results were obtained. The new models correlating ρ and θ under different site conditions are the first set of models based on field data from a loessial region, and their acceptable performance makes them applicable for measuring different soil parameters in the Loess Plateau and possibly other loessial regions around the world. Deep soil Electrical resistivity Land use Loessial soil Soil condition Soil water content Wang, Yunqiang verfasserin (orcid)0000-0003-3380-549X aut Zhao, Yali verfasserin aut Zhang, Pingping verfasserin (orcid)0000-0003-4555-9708 aut Song, Yi verfasserin aut He, Meina verfasserin aut Zhang, Chencheng verfasserin aut Tong, Yongping verfasserin aut Zhou, Jingxiong verfasserin aut Qi, Lijun verfasserin aut Xu, Lan verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 589 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:589 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 589 |
spelling |
10.1016/j.jhydrol.2020.125132 doi (DE-627)ELV00457026X (ELSEVIER)S0022-1694(20)30592-8 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Sun, Hui verfasserin (orcid)0000-0002-9866-1792 aut Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity tomography (ERT) for indirectly determining θ through the development of prediction models for loessial regions under different site conditions (i.e., soil texture, land use, soil depth, and dry/wet conditions). We obtained 2769 pairs of electrical resistivity (ρ) and θ datasets using ERT (53 sites) and a neutron probe (69 access tubes) on the Chinese Loess Plateau. We built linear and nonlinear models correlating ρ and θ and selected the best model according to the coefficient of determination (R 2) and root-mean-square error (RMSE). The uncertainty and sensitivity of ERT-derived θ were further evaluated and acceptable results were obtained. The new models correlating ρ and θ under different site conditions are the first set of models based on field data from a loessial region, and their acceptable performance makes them applicable for measuring different soil parameters in the Loess Plateau and possibly other loessial regions around the world. Deep soil Electrical resistivity Land use Loessial soil Soil condition Soil water content Wang, Yunqiang verfasserin (orcid)0000-0003-3380-549X aut Zhao, Yali verfasserin aut Zhang, Pingping verfasserin (orcid)0000-0003-4555-9708 aut Song, Yi verfasserin aut He, Meina verfasserin aut Zhang, Chencheng verfasserin aut Tong, Yongping verfasserin aut Zhou, Jingxiong verfasserin aut Qi, Lijun verfasserin aut Xu, Lan verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 589 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:589 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 589 |
allfields_unstemmed |
10.1016/j.jhydrol.2020.125132 doi (DE-627)ELV00457026X (ELSEVIER)S0022-1694(20)30592-8 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Sun, Hui verfasserin (orcid)0000-0002-9866-1792 aut Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity tomography (ERT) for indirectly determining θ through the development of prediction models for loessial regions under different site conditions (i.e., soil texture, land use, soil depth, and dry/wet conditions). We obtained 2769 pairs of electrical resistivity (ρ) and θ datasets using ERT (53 sites) and a neutron probe (69 access tubes) on the Chinese Loess Plateau. We built linear and nonlinear models correlating ρ and θ and selected the best model according to the coefficient of determination (R 2) and root-mean-square error (RMSE). The uncertainty and sensitivity of ERT-derived θ were further evaluated and acceptable results were obtained. The new models correlating ρ and θ under different site conditions are the first set of models based on field data from a loessial region, and their acceptable performance makes them applicable for measuring different soil parameters in the Loess Plateau and possibly other loessial regions around the world. Deep soil Electrical resistivity Land use Loessial soil Soil condition Soil water content Wang, Yunqiang verfasserin (orcid)0000-0003-3380-549X aut Zhao, Yali verfasserin aut Zhang, Pingping verfasserin (orcid)0000-0003-4555-9708 aut Song, Yi verfasserin aut He, Meina verfasserin aut Zhang, Chencheng verfasserin aut Tong, Yongping verfasserin aut Zhou, Jingxiong verfasserin aut Qi, Lijun verfasserin aut Xu, Lan verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 589 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:589 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 589 |
allfieldsGer |
10.1016/j.jhydrol.2020.125132 doi (DE-627)ELV00457026X (ELSEVIER)S0022-1694(20)30592-8 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Sun, Hui verfasserin (orcid)0000-0002-9866-1792 aut Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity tomography (ERT) for indirectly determining θ through the development of prediction models for loessial regions under different site conditions (i.e., soil texture, land use, soil depth, and dry/wet conditions). We obtained 2769 pairs of electrical resistivity (ρ) and θ datasets using ERT (53 sites) and a neutron probe (69 access tubes) on the Chinese Loess Plateau. We built linear and nonlinear models correlating ρ and θ and selected the best model according to the coefficient of determination (R 2) and root-mean-square error (RMSE). The uncertainty and sensitivity of ERT-derived θ were further evaluated and acceptable results were obtained. The new models correlating ρ and θ under different site conditions are the first set of models based on field data from a loessial region, and their acceptable performance makes them applicable for measuring different soil parameters in the Loess Plateau and possibly other loessial regions around the world. Deep soil Electrical resistivity Land use Loessial soil Soil condition Soil water content Wang, Yunqiang verfasserin (orcid)0000-0003-3380-549X aut Zhao, Yali verfasserin aut Zhang, Pingping verfasserin (orcid)0000-0003-4555-9708 aut Song, Yi verfasserin aut He, Meina verfasserin aut Zhang, Chencheng verfasserin aut Tong, Yongping verfasserin aut Zhou, Jingxiong verfasserin aut Qi, Lijun verfasserin aut Xu, Lan verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 589 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:589 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 589 |
allfieldsSound |
10.1016/j.jhydrol.2020.125132 doi (DE-627)ELV00457026X (ELSEVIER)S0022-1694(20)30592-8 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Sun, Hui verfasserin (orcid)0000-0002-9866-1792 aut Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity tomography (ERT) for indirectly determining θ through the development of prediction models for loessial regions under different site conditions (i.e., soil texture, land use, soil depth, and dry/wet conditions). We obtained 2769 pairs of electrical resistivity (ρ) and θ datasets using ERT (53 sites) and a neutron probe (69 access tubes) on the Chinese Loess Plateau. We built linear and nonlinear models correlating ρ and θ and selected the best model according to the coefficient of determination (R 2) and root-mean-square error (RMSE). The uncertainty and sensitivity of ERT-derived θ were further evaluated and acceptable results were obtained. The new models correlating ρ and θ under different site conditions are the first set of models based on field data from a loessial region, and their acceptable performance makes them applicable for measuring different soil parameters in the Loess Plateau and possibly other loessial regions around the world. Deep soil Electrical resistivity Land use Loessial soil Soil condition Soil water content Wang, Yunqiang verfasserin (orcid)0000-0003-3380-549X aut Zhao, Yali verfasserin aut Zhang, Pingping verfasserin (orcid)0000-0003-4555-9708 aut Song, Yi verfasserin aut He, Meina verfasserin aut Zhang, Chencheng verfasserin aut Tong, Yongping verfasserin aut Zhou, Jingxiong verfasserin aut Qi, Lijun verfasserin aut Xu, Lan verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 589 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:589 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 589 |
language |
English |
source |
Enthalten in Journal of hydrology 589 volume:589 |
sourceStr |
Enthalten in Journal of hydrology 589 volume:589 |
format_phy_str_mv |
Article |
bklname |
Hydrologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Deep soil Electrical resistivity Land use Loessial soil Soil condition Soil water content |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Journal of hydrology |
authorswithroles_txt_mv |
Sun, Hui @@aut@@ Wang, Yunqiang @@aut@@ Zhao, Yali @@aut@@ Zhang, Pingping @@aut@@ Song, Yi @@aut@@ He, Meina @@aut@@ Zhang, Chencheng @@aut@@ Tong, Yongping @@aut@@ Zhou, Jingxiong @@aut@@ Qi, Lijun @@aut@@ Xu, Lan @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
268761817 |
dewey-sort |
3690 |
id |
ELV00457026X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00457026X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2020.125132</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00457026X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(20)30592-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9866-1792</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity tomography (ERT) for indirectly determining θ through the development of prediction models for loessial regions under different site conditions (i.e., soil texture, land use, soil depth, and dry/wet conditions). We obtained 2769 pairs of electrical resistivity (ρ) and θ datasets using ERT (53 sites) and a neutron probe (69 access tubes) on the Chinese Loess Plateau. We built linear and nonlinear models correlating ρ and θ and selected the best model according to the coefficient of determination (R 2) and root-mean-square error (RMSE). The uncertainty and sensitivity of ERT-derived θ were further evaluated and acceptable results were obtained. The new models correlating ρ and θ under different site conditions are the first set of models based on field data from a loessial region, and their acceptable performance makes them applicable for measuring different soil parameters in the Loess Plateau and possibly other loessial regions around the world.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep soil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical resistivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land use</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loessial soil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil water content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yunqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3380-549X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Pingping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4555-9708</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Meina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Chencheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Yongping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Jingxiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Lijun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Lan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">589</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:589</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">589</subfield></datafield></record></collection>
|
author |
Sun, Hui |
spellingShingle |
Sun, Hui ddc 690 bkl 38.85 misc Deep soil misc Electrical resistivity misc Land use misc Loessial soil misc Soil condition misc Soil water content Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau |
authorStr |
Sun, Hui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268761817 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2707 |
topic_title |
690 DE-600 38.85 bkl Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau Deep soil Electrical resistivity Land use Loessial soil Soil condition Soil water content |
topic |
ddc 690 bkl 38.85 misc Deep soil misc Electrical resistivity misc Land use misc Loessial soil misc Soil condition misc Soil water content |
topic_unstemmed |
ddc 690 bkl 38.85 misc Deep soil misc Electrical resistivity misc Land use misc Loessial soil misc Soil condition misc Soil water content |
topic_browse |
ddc 690 bkl 38.85 misc Deep soil misc Electrical resistivity misc Land use misc Loessial soil misc Soil condition misc Soil water content |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of hydrology |
hierarchy_parent_id |
268761817 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Journal of hydrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 |
title |
Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau |
ctrlnum |
(DE-627)ELV00457026X (ELSEVIER)S0022-1694(20)30592-8 |
title_full |
Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau |
author_sort |
Sun, Hui |
journal |
Journal of hydrology |
journalStr |
Journal of hydrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Sun, Hui Wang, Yunqiang Zhao, Yali Zhang, Pingping Song, Yi He, Meina Zhang, Chencheng Tong, Yongping Zhou, Jingxiong Qi, Lijun Xu, Lan |
container_volume |
589 |
class |
690 DE-600 38.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Hui |
doi_str_mv |
10.1016/j.jhydrol.2020.125132 |
normlink |
(ORCID)0000-0002-9866-1792 (ORCID)0000-0003-3380-549X (ORCID)0000-0003-4555-9708 |
normlink_prefix_str_mv |
(orcid)0000-0002-9866-1792 (orcid)0000-0003-3380-549X (orcid)0000-0003-4555-9708 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
assessing the value of electrical resistivity derived soil water content: insights from a case study in the critical zone of the chinese loess plateau |
title_auth |
Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau |
abstract |
Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity tomography (ERT) for indirectly determining θ through the development of prediction models for loessial regions under different site conditions (i.e., soil texture, land use, soil depth, and dry/wet conditions). We obtained 2769 pairs of electrical resistivity (ρ) and θ datasets using ERT (53 sites) and a neutron probe (69 access tubes) on the Chinese Loess Plateau. We built linear and nonlinear models correlating ρ and θ and selected the best model according to the coefficient of determination (R 2) and root-mean-square error (RMSE). The uncertainty and sensitivity of ERT-derived θ were further evaluated and acceptable results were obtained. The new models correlating ρ and θ under different site conditions are the first set of models based on field data from a loessial region, and their acceptable performance makes them applicable for measuring different soil parameters in the Loess Plateau and possibly other loessial regions around the world. |
abstractGer |
Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity tomography (ERT) for indirectly determining θ through the development of prediction models for loessial regions under different site conditions (i.e., soil texture, land use, soil depth, and dry/wet conditions). We obtained 2769 pairs of electrical resistivity (ρ) and θ datasets using ERT (53 sites) and a neutron probe (69 access tubes) on the Chinese Loess Plateau. We built linear and nonlinear models correlating ρ and θ and selected the best model according to the coefficient of determination (R 2) and root-mean-square error (RMSE). The uncertainty and sensitivity of ERT-derived θ were further evaluated and acceptable results were obtained. The new models correlating ρ and θ under different site conditions are the first set of models based on field data from a loessial region, and their acceptable performance makes them applicable for measuring different soil parameters in the Loess Plateau and possibly other loessial regions around the world. |
abstract_unstemmed |
Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity tomography (ERT) for indirectly determining θ through the development of prediction models for loessial regions under different site conditions (i.e., soil texture, land use, soil depth, and dry/wet conditions). We obtained 2769 pairs of electrical resistivity (ρ) and θ datasets using ERT (53 sites) and a neutron probe (69 access tubes) on the Chinese Loess Plateau. We built linear and nonlinear models correlating ρ and θ and selected the best model according to the coefficient of determination (R 2) and root-mean-square error (RMSE). The uncertainty and sensitivity of ERT-derived θ were further evaluated and acceptable results were obtained. The new models correlating ρ and θ under different site conditions are the first set of models based on field data from a loessial region, and their acceptable performance makes them applicable for measuring different soil parameters in the Loess Plateau and possibly other loessial regions around the world. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau |
remote_bool |
true |
author2 |
Wang, Yunqiang Zhao, Yali Zhang, Pingping Song, Yi He, Meina Zhang, Chencheng Tong, Yongping Zhou, Jingxiong Qi, Lijun Xu, Lan |
author2Str |
Wang, Yunqiang Zhao, Yali Zhang, Pingping Song, Yi He, Meina Zhang, Chencheng Tong, Yongping Zhou, Jingxiong Qi, Lijun Xu, Lan |
ppnlink |
268761817 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jhydrol.2020.125132 |
up_date |
2024-07-06T23:26:14.412Z |
_version_ |
1803874074008485888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00457026X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2020.125132</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00457026X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(20)30592-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9866-1792</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the value of electrical resistivity derived soil water content: Insights from a case study in the Critical Zone of the Chinese Loess Plateau</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Acquiring data for the soil water content (θ) is important for assessing vegetation growth, drought, and climate change. However, it is a time-consuming and labor-intensive task that is especially challenging in deep soils. Therefore, we introduce the noninvasive technique of electrical resistivity tomography (ERT) for indirectly determining θ through the development of prediction models for loessial regions under different site conditions (i.e., soil texture, land use, soil depth, and dry/wet conditions). We obtained 2769 pairs of electrical resistivity (ρ) and θ datasets using ERT (53 sites) and a neutron probe (69 access tubes) on the Chinese Loess Plateau. We built linear and nonlinear models correlating ρ and θ and selected the best model according to the coefficient of determination (R 2) and root-mean-square error (RMSE). The uncertainty and sensitivity of ERT-derived θ were further evaluated and acceptable results were obtained. The new models correlating ρ and θ under different site conditions are the first set of models based on field data from a loessial region, and their acceptable performance makes them applicable for measuring different soil parameters in the Loess Plateau and possibly other loessial regions around the world.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep soil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical resistivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land use</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loessial soil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil water content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yunqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3380-549X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Pingping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4555-9708</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Meina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Chencheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Yongping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Jingxiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Lijun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Lan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">589</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:589</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">589</subfield></datafield></record></collection>
|
score |
7.4000053 |