Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China
Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-ye...
Ausführliche Beschreibung
Autor*in: |
Liu, Hongye [verfasserIn] Gu, Yansheng [verfasserIn] Yu, Zicheng [verfasserIn] Huang, Chunju [verfasserIn] Ge, Jiwen [verfasserIn] Huang, Xianyu [verfasserIn] Xie, Shucheng [verfasserIn] Zheng, Min [verfasserIn] Zhang, Zhiqi [verfasserIn] Cheng, Shenggao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of hydrology - Amsterdam [u.a.] : Elsevier, 1963, 589 |
---|---|
Übergeordnetes Werk: |
volume:589 |
DOI / URN: |
10.1016/j.jhydrol.2020.125169 |
---|
Katalog-ID: |
ELV004570316 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004570316 | ||
003 | DE-627 | ||
005 | 20230524144344.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jhydrol.2020.125169 |2 doi | |
035 | |a (DE-627)ELV004570316 | ||
035 | |a (ELSEVIER)S0022-1694(20)30629-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 38.85 |2 bkl | ||
100 | 1 | |a Liu, Hongye |e verfasserin |0 (orcid)0000-0003-0235-1405 |4 aut | |
245 | 1 | 0 | |a Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-year fossil phytolith record from an herbaceous community-dominated mountain peatland in central China to reconstruct climate changes and vegetation evolution and reveal the interactions between regional climate changes and peatland ecosystem. The abundance of bulliform phytoliths—a silicified type of cells that regulate the movements of plant leaves to reduce light exposure and transpiration rate—shows close correlations with the Holocene climate variations with higher bulliform abundance in response to warm-dry climate (11,500–9600 cal yr BP; 7500–3000 cal yr BP) and lower values associated with cold-wet climate (13,000–11,500 cal yr BP; 3000 cal yr BP-present). Spectral analysis reveals that bulliform abundance andreconstructed climate vary with a major ~1000-year periodicity during the Holocene, suggesting a possible causal relationship to solar activity. A high bulliform abundance and warm-dry climate correspond with enhanced solar activity, and vice versa. We interpret that the resultant leaf water deficit resulted from greater light interception, high temperature anddrought promoted the production of bulliform cells to fold leaf for water conservation, which is an effective protective mechanism of peatland grasses from the environmental stress. These results expand our understanding of how grass-dominated peatland plant water regulation recorded by bulliform phytoliths responds to solar radiation and local hydroclimate during geological period. | ||
650 | 4 | |a Phytolith | |
650 | 4 | |a Water regulation | |
650 | 4 | |a 1000-year periodicity | |
650 | 4 | |a Solar activity | |
650 | 4 | |a Holocene peat, central China | |
700 | 1 | |a Gu, Yansheng |e verfasserin |0 (orcid)0000-0003-1201-2386 |4 aut | |
700 | 1 | |a Yu, Zicheng |e verfasserin |4 aut | |
700 | 1 | |a Huang, Chunju |e verfasserin |4 aut | |
700 | 1 | |a Ge, Jiwen |e verfasserin |4 aut | |
700 | 1 | |a Huang, Xianyu |e verfasserin |4 aut | |
700 | 1 | |a Xie, Shucheng |e verfasserin |4 aut | |
700 | 1 | |a Zheng, Min |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Zhiqi |e verfasserin |4 aut | |
700 | 1 | |a Cheng, Shenggao |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of hydrology |d Amsterdam [u.a.] : Elsevier, 1963 |g 589 |h Online-Ressource |w (DE-627)268761817 |w (DE-600)1473173-3 |w (DE-576)077610628 |x 1879-2707 |7 nnns |
773 | 1 | 8 | |g volume:589 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.85 |j Hydrologie: Allgemeines |
951 | |a AR | ||
952 | |d 589 |
author_variant |
h l hl y g yg z y zy c h ch j g jg x h xh s x sx m z mz z z zz s c sc |
---|---|
matchkey_str |
article:18792707:2020----::ooeeetadaergltorsost10yaslrylidctd |
hierarchy_sort_str |
2020 |
bklnumber |
38.85 |
publishDate |
2020 |
allfields |
10.1016/j.jhydrol.2020.125169 doi (DE-627)ELV004570316 (ELSEVIER)S0022-1694(20)30629-6 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Liu, Hongye verfasserin (orcid)0000-0003-0235-1405 aut Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-year fossil phytolith record from an herbaceous community-dominated mountain peatland in central China to reconstruct climate changes and vegetation evolution and reveal the interactions between regional climate changes and peatland ecosystem. The abundance of bulliform phytoliths—a silicified type of cells that regulate the movements of plant leaves to reduce light exposure and transpiration rate—shows close correlations with the Holocene climate variations with higher bulliform abundance in response to warm-dry climate (11,500–9600 cal yr BP; 7500–3000 cal yr BP) and lower values associated with cold-wet climate (13,000–11,500 cal yr BP; 3000 cal yr BP-present). Spectral analysis reveals that bulliform abundance andreconstructed climate vary with a major ~1000-year periodicity during the Holocene, suggesting a possible causal relationship to solar activity. A high bulliform abundance and warm-dry climate correspond with enhanced solar activity, and vice versa. We interpret that the resultant leaf water deficit resulted from greater light interception, high temperature anddrought promoted the production of bulliform cells to fold leaf for water conservation, which is an effective protective mechanism of peatland grasses from the environmental stress. These results expand our understanding of how grass-dominated peatland plant water regulation recorded by bulliform phytoliths responds to solar radiation and local hydroclimate during geological period. Phytolith Water regulation 1000-year periodicity Solar activity Holocene peat, central China Gu, Yansheng verfasserin (orcid)0000-0003-1201-2386 aut Yu, Zicheng verfasserin aut Huang, Chunju verfasserin aut Ge, Jiwen verfasserin aut Huang, Xianyu verfasserin aut Xie, Shucheng verfasserin aut Zheng, Min verfasserin aut Zhang, Zhiqi verfasserin aut Cheng, Shenggao verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 589 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:589 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 589 |
spelling |
10.1016/j.jhydrol.2020.125169 doi (DE-627)ELV004570316 (ELSEVIER)S0022-1694(20)30629-6 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Liu, Hongye verfasserin (orcid)0000-0003-0235-1405 aut Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-year fossil phytolith record from an herbaceous community-dominated mountain peatland in central China to reconstruct climate changes and vegetation evolution and reveal the interactions between regional climate changes and peatland ecosystem. The abundance of bulliform phytoliths—a silicified type of cells that regulate the movements of plant leaves to reduce light exposure and transpiration rate—shows close correlations with the Holocene climate variations with higher bulliform abundance in response to warm-dry climate (11,500–9600 cal yr BP; 7500–3000 cal yr BP) and lower values associated with cold-wet climate (13,000–11,500 cal yr BP; 3000 cal yr BP-present). Spectral analysis reveals that bulliform abundance andreconstructed climate vary with a major ~1000-year periodicity during the Holocene, suggesting a possible causal relationship to solar activity. A high bulliform abundance and warm-dry climate correspond with enhanced solar activity, and vice versa. We interpret that the resultant leaf water deficit resulted from greater light interception, high temperature anddrought promoted the production of bulliform cells to fold leaf for water conservation, which is an effective protective mechanism of peatland grasses from the environmental stress. These results expand our understanding of how grass-dominated peatland plant water regulation recorded by bulliform phytoliths responds to solar radiation and local hydroclimate during geological period. Phytolith Water regulation 1000-year periodicity Solar activity Holocene peat, central China Gu, Yansheng verfasserin (orcid)0000-0003-1201-2386 aut Yu, Zicheng verfasserin aut Huang, Chunju verfasserin aut Ge, Jiwen verfasserin aut Huang, Xianyu verfasserin aut Xie, Shucheng verfasserin aut Zheng, Min verfasserin aut Zhang, Zhiqi verfasserin aut Cheng, Shenggao verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 589 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:589 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 589 |
allfields_unstemmed |
10.1016/j.jhydrol.2020.125169 doi (DE-627)ELV004570316 (ELSEVIER)S0022-1694(20)30629-6 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Liu, Hongye verfasserin (orcid)0000-0003-0235-1405 aut Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-year fossil phytolith record from an herbaceous community-dominated mountain peatland in central China to reconstruct climate changes and vegetation evolution and reveal the interactions between regional climate changes and peatland ecosystem. The abundance of bulliform phytoliths—a silicified type of cells that regulate the movements of plant leaves to reduce light exposure and transpiration rate—shows close correlations with the Holocene climate variations with higher bulliform abundance in response to warm-dry climate (11,500–9600 cal yr BP; 7500–3000 cal yr BP) and lower values associated with cold-wet climate (13,000–11,500 cal yr BP; 3000 cal yr BP-present). Spectral analysis reveals that bulliform abundance andreconstructed climate vary with a major ~1000-year periodicity during the Holocene, suggesting a possible causal relationship to solar activity. A high bulliform abundance and warm-dry climate correspond with enhanced solar activity, and vice versa. We interpret that the resultant leaf water deficit resulted from greater light interception, high temperature anddrought promoted the production of bulliform cells to fold leaf for water conservation, which is an effective protective mechanism of peatland grasses from the environmental stress. These results expand our understanding of how grass-dominated peatland plant water regulation recorded by bulliform phytoliths responds to solar radiation and local hydroclimate during geological period. Phytolith Water regulation 1000-year periodicity Solar activity Holocene peat, central China Gu, Yansheng verfasserin (orcid)0000-0003-1201-2386 aut Yu, Zicheng verfasserin aut Huang, Chunju verfasserin aut Ge, Jiwen verfasserin aut Huang, Xianyu verfasserin aut Xie, Shucheng verfasserin aut Zheng, Min verfasserin aut Zhang, Zhiqi verfasserin aut Cheng, Shenggao verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 589 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:589 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 589 |
allfieldsGer |
10.1016/j.jhydrol.2020.125169 doi (DE-627)ELV004570316 (ELSEVIER)S0022-1694(20)30629-6 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Liu, Hongye verfasserin (orcid)0000-0003-0235-1405 aut Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-year fossil phytolith record from an herbaceous community-dominated mountain peatland in central China to reconstruct climate changes and vegetation evolution and reveal the interactions between regional climate changes and peatland ecosystem. The abundance of bulliform phytoliths—a silicified type of cells that regulate the movements of plant leaves to reduce light exposure and transpiration rate—shows close correlations with the Holocene climate variations with higher bulliform abundance in response to warm-dry climate (11,500–9600 cal yr BP; 7500–3000 cal yr BP) and lower values associated with cold-wet climate (13,000–11,500 cal yr BP; 3000 cal yr BP-present). Spectral analysis reveals that bulliform abundance andreconstructed climate vary with a major ~1000-year periodicity during the Holocene, suggesting a possible causal relationship to solar activity. A high bulliform abundance and warm-dry climate correspond with enhanced solar activity, and vice versa. We interpret that the resultant leaf water deficit resulted from greater light interception, high temperature anddrought promoted the production of bulliform cells to fold leaf for water conservation, which is an effective protective mechanism of peatland grasses from the environmental stress. These results expand our understanding of how grass-dominated peatland plant water regulation recorded by bulliform phytoliths responds to solar radiation and local hydroclimate during geological period. Phytolith Water regulation 1000-year periodicity Solar activity Holocene peat, central China Gu, Yansheng verfasserin (orcid)0000-0003-1201-2386 aut Yu, Zicheng verfasserin aut Huang, Chunju verfasserin aut Ge, Jiwen verfasserin aut Huang, Xianyu verfasserin aut Xie, Shucheng verfasserin aut Zheng, Min verfasserin aut Zhang, Zhiqi verfasserin aut Cheng, Shenggao verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 589 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:589 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 589 |
allfieldsSound |
10.1016/j.jhydrol.2020.125169 doi (DE-627)ELV004570316 (ELSEVIER)S0022-1694(20)30629-6 DE-627 ger DE-627 rda eng 690 DE-600 38.85 bkl Liu, Hongye verfasserin (orcid)0000-0003-0235-1405 aut Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-year fossil phytolith record from an herbaceous community-dominated mountain peatland in central China to reconstruct climate changes and vegetation evolution and reveal the interactions between regional climate changes and peatland ecosystem. The abundance of bulliform phytoliths—a silicified type of cells that regulate the movements of plant leaves to reduce light exposure and transpiration rate—shows close correlations with the Holocene climate variations with higher bulliform abundance in response to warm-dry climate (11,500–9600 cal yr BP; 7500–3000 cal yr BP) and lower values associated with cold-wet climate (13,000–11,500 cal yr BP; 3000 cal yr BP-present). Spectral analysis reveals that bulliform abundance andreconstructed climate vary with a major ~1000-year periodicity during the Holocene, suggesting a possible causal relationship to solar activity. A high bulliform abundance and warm-dry climate correspond with enhanced solar activity, and vice versa. We interpret that the resultant leaf water deficit resulted from greater light interception, high temperature anddrought promoted the production of bulliform cells to fold leaf for water conservation, which is an effective protective mechanism of peatland grasses from the environmental stress. These results expand our understanding of how grass-dominated peatland plant water regulation recorded by bulliform phytoliths responds to solar radiation and local hydroclimate during geological period. Phytolith Water regulation 1000-year periodicity Solar activity Holocene peat, central China Gu, Yansheng verfasserin (orcid)0000-0003-1201-2386 aut Yu, Zicheng verfasserin aut Huang, Chunju verfasserin aut Ge, Jiwen verfasserin aut Huang, Xianyu verfasserin aut Xie, Shucheng verfasserin aut Zheng, Min verfasserin aut Zhang, Zhiqi verfasserin aut Cheng, Shenggao verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 589 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:589 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.85 Hydrologie: Allgemeines AR 589 |
language |
English |
source |
Enthalten in Journal of hydrology 589 volume:589 |
sourceStr |
Enthalten in Journal of hydrology 589 volume:589 |
format_phy_str_mv |
Article |
bklname |
Hydrologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Phytolith Water regulation 1000-year periodicity Solar activity Holocene peat, central China |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Journal of hydrology |
authorswithroles_txt_mv |
Liu, Hongye @@aut@@ Gu, Yansheng @@aut@@ Yu, Zicheng @@aut@@ Huang, Chunju @@aut@@ Ge, Jiwen @@aut@@ Huang, Xianyu @@aut@@ Xie, Shucheng @@aut@@ Zheng, Min @@aut@@ Zhang, Zhiqi @@aut@@ Cheng, Shenggao @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
268761817 |
dewey-sort |
3690 |
id |
ELV004570316 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004570316</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2020.125169</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004570316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(20)30629-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Hongye</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0235-1405</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-year fossil phytolith record from an herbaceous community-dominated mountain peatland in central China to reconstruct climate changes and vegetation evolution and reveal the interactions between regional climate changes and peatland ecosystem. The abundance of bulliform phytoliths—a silicified type of cells that regulate the movements of plant leaves to reduce light exposure and transpiration rate—shows close correlations with the Holocene climate variations with higher bulliform abundance in response to warm-dry climate (11,500–9600 cal yr BP; 7500–3000 cal yr BP) and lower values associated with cold-wet climate (13,000–11,500 cal yr BP; 3000 cal yr BP-present). Spectral analysis reveals that bulliform abundance andreconstructed climate vary with a major ~1000-year periodicity during the Holocene, suggesting a possible causal relationship to solar activity. A high bulliform abundance and warm-dry climate correspond with enhanced solar activity, and vice versa. We interpret that the resultant leaf water deficit resulted from greater light interception, high temperature anddrought promoted the production of bulliform cells to fold leaf for water conservation, which is an effective protective mechanism of peatland grasses from the environmental stress. These results expand our understanding of how grass-dominated peatland plant water regulation recorded by bulliform phytoliths responds to solar radiation and local hydroclimate during geological period.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phytolith</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">1000-year periodicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holocene peat, central China</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Yansheng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1201-2386</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Zicheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Chunju</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ge, Jiwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Xianyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Shucheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Shenggao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">589</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:589</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">589</subfield></datafield></record></collection>
|
author |
Liu, Hongye |
spellingShingle |
Liu, Hongye ddc 690 bkl 38.85 misc Phytolith misc Water regulation misc 1000-year periodicity misc Solar activity misc Holocene peat, central China Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China |
authorStr |
Liu, Hongye |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268761817 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2707 |
topic_title |
690 DE-600 38.85 bkl Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China Phytolith Water regulation 1000-year periodicity Solar activity Holocene peat, central China |
topic |
ddc 690 bkl 38.85 misc Phytolith misc Water regulation misc 1000-year periodicity misc Solar activity misc Holocene peat, central China |
topic_unstemmed |
ddc 690 bkl 38.85 misc Phytolith misc Water regulation misc 1000-year periodicity misc Solar activity misc Holocene peat, central China |
topic_browse |
ddc 690 bkl 38.85 misc Phytolith misc Water regulation misc 1000-year periodicity misc Solar activity misc Holocene peat, central China |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of hydrology |
hierarchy_parent_id |
268761817 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Journal of hydrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 |
title |
Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China |
ctrlnum |
(DE-627)ELV004570316 (ELSEVIER)S0022-1694(20)30629-6 |
title_full |
Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China |
author_sort |
Liu, Hongye |
journal |
Journal of hydrology |
journalStr |
Journal of hydrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Hongye Gu, Yansheng Yu, Zicheng Huang, Chunju Ge, Jiwen Huang, Xianyu Xie, Shucheng Zheng, Min Zhang, Zhiqi Cheng, Shenggao |
container_volume |
589 |
class |
690 DE-600 38.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Hongye |
doi_str_mv |
10.1016/j.jhydrol.2020.125169 |
normlink |
(ORCID)0000-0003-0235-1405 (ORCID)0000-0003-1201-2386 |
normlink_prefix_str_mv |
(orcid)0000-0003-0235-1405 (orcid)0000-0003-1201-2386 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central china |
title_auth |
Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China |
abstract |
Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-year fossil phytolith record from an herbaceous community-dominated mountain peatland in central China to reconstruct climate changes and vegetation evolution and reveal the interactions between regional climate changes and peatland ecosystem. The abundance of bulliform phytoliths—a silicified type of cells that regulate the movements of plant leaves to reduce light exposure and transpiration rate—shows close correlations with the Holocene climate variations with higher bulliform abundance in response to warm-dry climate (11,500–9600 cal yr BP; 7500–3000 cal yr BP) and lower values associated with cold-wet climate (13,000–11,500 cal yr BP; 3000 cal yr BP-present). Spectral analysis reveals that bulliform abundance andreconstructed climate vary with a major ~1000-year periodicity during the Holocene, suggesting a possible causal relationship to solar activity. A high bulliform abundance and warm-dry climate correspond with enhanced solar activity, and vice versa. We interpret that the resultant leaf water deficit resulted from greater light interception, high temperature anddrought promoted the production of bulliform cells to fold leaf for water conservation, which is an effective protective mechanism of peatland grasses from the environmental stress. These results expand our understanding of how grass-dominated peatland plant water regulation recorded by bulliform phytoliths responds to solar radiation and local hydroclimate during geological period. |
abstractGer |
Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-year fossil phytolith record from an herbaceous community-dominated mountain peatland in central China to reconstruct climate changes and vegetation evolution and reveal the interactions between regional climate changes and peatland ecosystem. The abundance of bulliform phytoliths—a silicified type of cells that regulate the movements of plant leaves to reduce light exposure and transpiration rate—shows close correlations with the Holocene climate variations with higher bulliform abundance in response to warm-dry climate (11,500–9600 cal yr BP; 7500–3000 cal yr BP) and lower values associated with cold-wet climate (13,000–11,500 cal yr BP; 3000 cal yr BP-present). Spectral analysis reveals that bulliform abundance andreconstructed climate vary with a major ~1000-year periodicity during the Holocene, suggesting a possible causal relationship to solar activity. A high bulliform abundance and warm-dry climate correspond with enhanced solar activity, and vice versa. We interpret that the resultant leaf water deficit resulted from greater light interception, high temperature anddrought promoted the production of bulliform cells to fold leaf for water conservation, which is an effective protective mechanism of peatland grasses from the environmental stress. These results expand our understanding of how grass-dominated peatland plant water regulation recorded by bulliform phytoliths responds to solar radiation and local hydroclimate during geological period. |
abstract_unstemmed |
Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-year fossil phytolith record from an herbaceous community-dominated mountain peatland in central China to reconstruct climate changes and vegetation evolution and reveal the interactions between regional climate changes and peatland ecosystem. The abundance of bulliform phytoliths—a silicified type of cells that regulate the movements of plant leaves to reduce light exposure and transpiration rate—shows close correlations with the Holocene climate variations with higher bulliform abundance in response to warm-dry climate (11,500–9600 cal yr BP; 7500–3000 cal yr BP) and lower values associated with cold-wet climate (13,000–11,500 cal yr BP; 3000 cal yr BP-present). Spectral analysis reveals that bulliform abundance andreconstructed climate vary with a major ~1000-year periodicity during the Holocene, suggesting a possible causal relationship to solar activity. A high bulliform abundance and warm-dry climate correspond with enhanced solar activity, and vice versa. We interpret that the resultant leaf water deficit resulted from greater light interception, high temperature anddrought promoted the production of bulliform cells to fold leaf for water conservation, which is an effective protective mechanism of peatland grasses from the environmental stress. These results expand our understanding of how grass-dominated peatland plant water regulation recorded by bulliform phytoliths responds to solar radiation and local hydroclimate during geological period. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China |
remote_bool |
true |
author2 |
Gu, Yansheng Yu, Zicheng Huang, Chunju Ge, Jiwen Huang, Xianyu Xie, Shucheng Zheng, Min Zhang, Zhiqi Cheng, Shenggao |
author2Str |
Gu, Yansheng Yu, Zicheng Huang, Chunju Ge, Jiwen Huang, Xianyu Xie, Shucheng Zheng, Min Zhang, Zhiqi Cheng, Shenggao |
ppnlink |
268761817 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jhydrol.2020.125169 |
up_date |
2024-07-06T23:26:15.033Z |
_version_ |
1803874074659651584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004570316</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2020.125169</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004570316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(20)30629-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Hongye</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0235-1405</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Holocene peatland water regulation response to ~1000-year solar cycle indicated by phytoliths in central China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Peatland ecosystem processes are strongly influenced by hydrology linked to climate change. However, how transpiration, as major water loss pathway in closed peatland, responds to climate change and then regulates ecosystem water balance that remains poorly understood. Here, we reported an 18,000-year fossil phytolith record from an herbaceous community-dominated mountain peatland in central China to reconstruct climate changes and vegetation evolution and reveal the interactions between regional climate changes and peatland ecosystem. The abundance of bulliform phytoliths—a silicified type of cells that regulate the movements of plant leaves to reduce light exposure and transpiration rate—shows close correlations with the Holocene climate variations with higher bulliform abundance in response to warm-dry climate (11,500–9600 cal yr BP; 7500–3000 cal yr BP) and lower values associated with cold-wet climate (13,000–11,500 cal yr BP; 3000 cal yr BP-present). Spectral analysis reveals that bulliform abundance andreconstructed climate vary with a major ~1000-year periodicity during the Holocene, suggesting a possible causal relationship to solar activity. A high bulliform abundance and warm-dry climate correspond with enhanced solar activity, and vice versa. We interpret that the resultant leaf water deficit resulted from greater light interception, high temperature anddrought promoted the production of bulliform cells to fold leaf for water conservation, which is an effective protective mechanism of peatland grasses from the environmental stress. These results expand our understanding of how grass-dominated peatland plant water regulation recorded by bulliform phytoliths responds to solar radiation and local hydroclimate during geological period.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phytolith</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">1000-year periodicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holocene peat, central China</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Yansheng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1201-2386</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Zicheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Chunju</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ge, Jiwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Xianyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Shucheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Shenggao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">589</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:589</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">589</subfield></datafield></record></collection>
|
score |
7.4020147 |