The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy
A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three...
Ausführliche Beschreibung
Autor*in: |
Yu, Z.Y. [verfasserIn] Wang, X.M. [verfasserIn] Yue, Z.F. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Mechanics of materials - Amsterdam : Elsevier, 1982, 149 |
---|---|
Übergeordnetes Werk: |
volume:149 |
DOI / URN: |
10.1016/j.mechmat.2020.103563 |
---|
Katalog-ID: |
ELV004579631 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004579631 | ||
003 | DE-627 | ||
005 | 20230524125810.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230502s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.mechmat.2020.103563 |2 doi | |
035 | |a (DE-627)ELV004579631 | ||
035 | |a (ELSEVIER)S0167-6636(20)30605-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a 51.32 |2 bkl | ||
100 | 1 | |a Yu, Z.Y. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three-stepped specimen can help to simultaneously analyze the extent of microstructure evolution under different stress states, which included uniaxial states in gauge sections and multiaxial stress states in beveled sections. Metallographic observations revealed that both the rafting behavior and topological inversion behavior of γ/γ′ microstructure occurred during the cyclic creep tests. The specific connectivity number of the γ′ phase NA (γ′) was introduced to assess the extent of these microstructure evolutions, which was found to be related to the loading cyclic numbers and stress levels. Then a parameter of normalized cyclic number Tr was proposed to consider the contribution of these two factors. The extent of microstructure evolution was observed increasing with the normalized cyclic number. And the relationship between evaluation parameters NA (γ′) and Tr was proved to follow an asymptotic equation. The finite element model that established in the paper assisted to qualitatively analyze the rafting or topological inversion process. It successfully predicted the cyclic lives and acquired the normalized cyclic number Tr. The magnitude and distribution gradient of principal stress field in finite element model effectively account for rafting behavior under different stress states. | ||
650 | 4 | |a Nickel-base superalloy | |
650 | 4 | |a Cyclic creep test | |
650 | 4 | |a Microstructure morphology | |
650 | 4 | |a Finite element modeling | |
650 | 4 | |a Normalized cyclic number | |
700 | 1 | |a Wang, X.M. |e verfasserin |4 aut | |
700 | 1 | |a Yue, Z.F. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mechanics of materials |d Amsterdam : Elsevier, 1982 |g 149 |h Online-Ressource |w (DE-627)32051398X |w (DE-600)2013735-7 |w (DE-576)259484806 |x 1872-7743 |7 nnns |
773 | 1 | 8 | |g volume:149 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 51.32 |j Werkstoffmechanik |
951 | |a AR | ||
952 | |d 149 |
author_variant |
z y zy x w xw z y zy |
---|---|
matchkey_str |
article:18727743:2020----::hefcosrssaenatnmcaimnccicepeai |
hierarchy_sort_str |
2020 |
bklnumber |
51.32 |
publishDate |
2020 |
allfields |
10.1016/j.mechmat.2020.103563 doi (DE-627)ELV004579631 (ELSEVIER)S0167-6636(20)30605-0 DE-627 ger DE-627 rda eng 550 DE-600 51.32 bkl Yu, Z.Y. verfasserin aut The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three-stepped specimen can help to simultaneously analyze the extent of microstructure evolution under different stress states, which included uniaxial states in gauge sections and multiaxial stress states in beveled sections. Metallographic observations revealed that both the rafting behavior and topological inversion behavior of γ/γ′ microstructure occurred during the cyclic creep tests. The specific connectivity number of the γ′ phase NA (γ′) was introduced to assess the extent of these microstructure evolutions, which was found to be related to the loading cyclic numbers and stress levels. Then a parameter of normalized cyclic number Tr was proposed to consider the contribution of these two factors. The extent of microstructure evolution was observed increasing with the normalized cyclic number. And the relationship between evaluation parameters NA (γ′) and Tr was proved to follow an asymptotic equation. The finite element model that established in the paper assisted to qualitatively analyze the rafting or topological inversion process. It successfully predicted the cyclic lives and acquired the normalized cyclic number Tr. The magnitude and distribution gradient of principal stress field in finite element model effectively account for rafting behavior under different stress states. Nickel-base superalloy Cyclic creep test Microstructure morphology Finite element modeling Normalized cyclic number Wang, X.M. verfasserin aut Yue, Z.F. verfasserin aut Enthalten in Mechanics of materials Amsterdam : Elsevier, 1982 149 Online-Ressource (DE-627)32051398X (DE-600)2013735-7 (DE-576)259484806 1872-7743 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 149 |
spelling |
10.1016/j.mechmat.2020.103563 doi (DE-627)ELV004579631 (ELSEVIER)S0167-6636(20)30605-0 DE-627 ger DE-627 rda eng 550 DE-600 51.32 bkl Yu, Z.Y. verfasserin aut The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three-stepped specimen can help to simultaneously analyze the extent of microstructure evolution under different stress states, which included uniaxial states in gauge sections and multiaxial stress states in beveled sections. Metallographic observations revealed that both the rafting behavior and topological inversion behavior of γ/γ′ microstructure occurred during the cyclic creep tests. The specific connectivity number of the γ′ phase NA (γ′) was introduced to assess the extent of these microstructure evolutions, which was found to be related to the loading cyclic numbers and stress levels. Then a parameter of normalized cyclic number Tr was proposed to consider the contribution of these two factors. The extent of microstructure evolution was observed increasing with the normalized cyclic number. And the relationship between evaluation parameters NA (γ′) and Tr was proved to follow an asymptotic equation. The finite element model that established in the paper assisted to qualitatively analyze the rafting or topological inversion process. It successfully predicted the cyclic lives and acquired the normalized cyclic number Tr. The magnitude and distribution gradient of principal stress field in finite element model effectively account for rafting behavior under different stress states. Nickel-base superalloy Cyclic creep test Microstructure morphology Finite element modeling Normalized cyclic number Wang, X.M. verfasserin aut Yue, Z.F. verfasserin aut Enthalten in Mechanics of materials Amsterdam : Elsevier, 1982 149 Online-Ressource (DE-627)32051398X (DE-600)2013735-7 (DE-576)259484806 1872-7743 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 149 |
allfields_unstemmed |
10.1016/j.mechmat.2020.103563 doi (DE-627)ELV004579631 (ELSEVIER)S0167-6636(20)30605-0 DE-627 ger DE-627 rda eng 550 DE-600 51.32 bkl Yu, Z.Y. verfasserin aut The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three-stepped specimen can help to simultaneously analyze the extent of microstructure evolution under different stress states, which included uniaxial states in gauge sections and multiaxial stress states in beveled sections. Metallographic observations revealed that both the rafting behavior and topological inversion behavior of γ/γ′ microstructure occurred during the cyclic creep tests. The specific connectivity number of the γ′ phase NA (γ′) was introduced to assess the extent of these microstructure evolutions, which was found to be related to the loading cyclic numbers and stress levels. Then a parameter of normalized cyclic number Tr was proposed to consider the contribution of these two factors. The extent of microstructure evolution was observed increasing with the normalized cyclic number. And the relationship between evaluation parameters NA (γ′) and Tr was proved to follow an asymptotic equation. The finite element model that established in the paper assisted to qualitatively analyze the rafting or topological inversion process. It successfully predicted the cyclic lives and acquired the normalized cyclic number Tr. The magnitude and distribution gradient of principal stress field in finite element model effectively account for rafting behavior under different stress states. Nickel-base superalloy Cyclic creep test Microstructure morphology Finite element modeling Normalized cyclic number Wang, X.M. verfasserin aut Yue, Z.F. verfasserin aut Enthalten in Mechanics of materials Amsterdam : Elsevier, 1982 149 Online-Ressource (DE-627)32051398X (DE-600)2013735-7 (DE-576)259484806 1872-7743 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 149 |
allfieldsGer |
10.1016/j.mechmat.2020.103563 doi (DE-627)ELV004579631 (ELSEVIER)S0167-6636(20)30605-0 DE-627 ger DE-627 rda eng 550 DE-600 51.32 bkl Yu, Z.Y. verfasserin aut The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three-stepped specimen can help to simultaneously analyze the extent of microstructure evolution under different stress states, which included uniaxial states in gauge sections and multiaxial stress states in beveled sections. Metallographic observations revealed that both the rafting behavior and topological inversion behavior of γ/γ′ microstructure occurred during the cyclic creep tests. The specific connectivity number of the γ′ phase NA (γ′) was introduced to assess the extent of these microstructure evolutions, which was found to be related to the loading cyclic numbers and stress levels. Then a parameter of normalized cyclic number Tr was proposed to consider the contribution of these two factors. The extent of microstructure evolution was observed increasing with the normalized cyclic number. And the relationship between evaluation parameters NA (γ′) and Tr was proved to follow an asymptotic equation. The finite element model that established in the paper assisted to qualitatively analyze the rafting or topological inversion process. It successfully predicted the cyclic lives and acquired the normalized cyclic number Tr. The magnitude and distribution gradient of principal stress field in finite element model effectively account for rafting behavior under different stress states. Nickel-base superalloy Cyclic creep test Microstructure morphology Finite element modeling Normalized cyclic number Wang, X.M. verfasserin aut Yue, Z.F. verfasserin aut Enthalten in Mechanics of materials Amsterdam : Elsevier, 1982 149 Online-Ressource (DE-627)32051398X (DE-600)2013735-7 (DE-576)259484806 1872-7743 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 149 |
allfieldsSound |
10.1016/j.mechmat.2020.103563 doi (DE-627)ELV004579631 (ELSEVIER)S0167-6636(20)30605-0 DE-627 ger DE-627 rda eng 550 DE-600 51.32 bkl Yu, Z.Y. verfasserin aut The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three-stepped specimen can help to simultaneously analyze the extent of microstructure evolution under different stress states, which included uniaxial states in gauge sections and multiaxial stress states in beveled sections. Metallographic observations revealed that both the rafting behavior and topological inversion behavior of γ/γ′ microstructure occurred during the cyclic creep tests. The specific connectivity number of the γ′ phase NA (γ′) was introduced to assess the extent of these microstructure evolutions, which was found to be related to the loading cyclic numbers and stress levels. Then a parameter of normalized cyclic number Tr was proposed to consider the contribution of these two factors. The extent of microstructure evolution was observed increasing with the normalized cyclic number. And the relationship between evaluation parameters NA (γ′) and Tr was proved to follow an asymptotic equation. The finite element model that established in the paper assisted to qualitatively analyze the rafting or topological inversion process. It successfully predicted the cyclic lives and acquired the normalized cyclic number Tr. The magnitude and distribution gradient of principal stress field in finite element model effectively account for rafting behavior under different stress states. Nickel-base superalloy Cyclic creep test Microstructure morphology Finite element modeling Normalized cyclic number Wang, X.M. verfasserin aut Yue, Z.F. verfasserin aut Enthalten in Mechanics of materials Amsterdam : Elsevier, 1982 149 Online-Ressource (DE-627)32051398X (DE-600)2013735-7 (DE-576)259484806 1872-7743 nnns volume:149 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.32 Werkstoffmechanik AR 149 |
language |
English |
source |
Enthalten in Mechanics of materials 149 volume:149 |
sourceStr |
Enthalten in Mechanics of materials 149 volume:149 |
format_phy_str_mv |
Article |
bklname |
Werkstoffmechanik |
institution |
findex.gbv.de |
topic_facet |
Nickel-base superalloy Cyclic creep test Microstructure morphology Finite element modeling Normalized cyclic number |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Mechanics of materials |
authorswithroles_txt_mv |
Yu, Z.Y. @@aut@@ Wang, X.M. @@aut@@ Yue, Z.F. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
32051398X |
dewey-sort |
3550 |
id |
ELV004579631 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004579631</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524125810.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.mechmat.2020.103563</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004579631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-6636(20)30605-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Z.Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three-stepped specimen can help to simultaneously analyze the extent of microstructure evolution under different stress states, which included uniaxial states in gauge sections and multiaxial stress states in beveled sections. Metallographic observations revealed that both the rafting behavior and topological inversion behavior of γ/γ′ microstructure occurred during the cyclic creep tests. The specific connectivity number of the γ′ phase NA (γ′) was introduced to assess the extent of these microstructure evolutions, which was found to be related to the loading cyclic numbers and stress levels. Then a parameter of normalized cyclic number Tr was proposed to consider the contribution of these two factors. The extent of microstructure evolution was observed increasing with the normalized cyclic number. And the relationship between evaluation parameters NA (γ′) and Tr was proved to follow an asymptotic equation. The finite element model that established in the paper assisted to qualitatively analyze the rafting or topological inversion process. It successfully predicted the cyclic lives and acquired the normalized cyclic number Tr. The magnitude and distribution gradient of principal stress field in finite element model effectively account for rafting behavior under different stress states.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nickel-base superalloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic creep test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructure morphology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normalized cyclic number</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, X.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, Z.F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanics of materials</subfield><subfield code="d">Amsterdam : Elsevier, 1982</subfield><subfield code="g">149</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32051398X</subfield><subfield code="w">(DE-600)2013735-7</subfield><subfield code="w">(DE-576)259484806</subfield><subfield code="x">1872-7743</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield></datafield></record></collection>
|
author |
Yu, Z.Y. |
spellingShingle |
Yu, Z.Y. ddc 550 bkl 51.32 misc Nickel-base superalloy misc Cyclic creep test misc Microstructure morphology misc Finite element modeling misc Normalized cyclic number The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy |
authorStr |
Yu, Z.Y. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32051398X |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-7743 |
topic_title |
550 DE-600 51.32 bkl The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy Nickel-base superalloy Cyclic creep test Microstructure morphology Finite element modeling Normalized cyclic number |
topic |
ddc 550 bkl 51.32 misc Nickel-base superalloy misc Cyclic creep test misc Microstructure morphology misc Finite element modeling misc Normalized cyclic number |
topic_unstemmed |
ddc 550 bkl 51.32 misc Nickel-base superalloy misc Cyclic creep test misc Microstructure morphology misc Finite element modeling misc Normalized cyclic number |
topic_browse |
ddc 550 bkl 51.32 misc Nickel-base superalloy misc Cyclic creep test misc Microstructure morphology misc Finite element modeling misc Normalized cyclic number |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mechanics of materials |
hierarchy_parent_id |
32051398X |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Mechanics of materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32051398X (DE-600)2013735-7 (DE-576)259484806 |
title |
The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy |
ctrlnum |
(DE-627)ELV004579631 (ELSEVIER)S0167-6636(20)30605-0 |
title_full |
The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy |
author_sort |
Yu, Z.Y. |
journal |
Mechanics of materials |
journalStr |
Mechanics of materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Yu, Z.Y. Wang, X.M. Yue, Z.F. |
container_volume |
149 |
class |
550 DE-600 51.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yu, Z.Y. |
doi_str_mv |
10.1016/j.mechmat.2020.103563 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
the effect of stress state on rafting mechanism and cyclic creep behavior of ni-base superalloy |
title_auth |
The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy |
abstract |
A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three-stepped specimen can help to simultaneously analyze the extent of microstructure evolution under different stress states, which included uniaxial states in gauge sections and multiaxial stress states in beveled sections. Metallographic observations revealed that both the rafting behavior and topological inversion behavior of γ/γ′ microstructure occurred during the cyclic creep tests. The specific connectivity number of the γ′ phase NA (γ′) was introduced to assess the extent of these microstructure evolutions, which was found to be related to the loading cyclic numbers and stress levels. Then a parameter of normalized cyclic number Tr was proposed to consider the contribution of these two factors. The extent of microstructure evolution was observed increasing with the normalized cyclic number. And the relationship between evaluation parameters NA (γ′) and Tr was proved to follow an asymptotic equation. The finite element model that established in the paper assisted to qualitatively analyze the rafting or topological inversion process. It successfully predicted the cyclic lives and acquired the normalized cyclic number Tr. The magnitude and distribution gradient of principal stress field in finite element model effectively account for rafting behavior under different stress states. |
abstractGer |
A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three-stepped specimen can help to simultaneously analyze the extent of microstructure evolution under different stress states, which included uniaxial states in gauge sections and multiaxial stress states in beveled sections. Metallographic observations revealed that both the rafting behavior and topological inversion behavior of γ/γ′ microstructure occurred during the cyclic creep tests. The specific connectivity number of the γ′ phase NA (γ′) was introduced to assess the extent of these microstructure evolutions, which was found to be related to the loading cyclic numbers and stress levels. Then a parameter of normalized cyclic number Tr was proposed to consider the contribution of these two factors. The extent of microstructure evolution was observed increasing with the normalized cyclic number. And the relationship between evaluation parameters NA (γ′) and Tr was proved to follow an asymptotic equation. The finite element model that established in the paper assisted to qualitatively analyze the rafting or topological inversion process. It successfully predicted the cyclic lives and acquired the normalized cyclic number Tr. The magnitude and distribution gradient of principal stress field in finite element model effectively account for rafting behavior under different stress states. |
abstract_unstemmed |
A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three-stepped specimen can help to simultaneously analyze the extent of microstructure evolution under different stress states, which included uniaxial states in gauge sections and multiaxial stress states in beveled sections. Metallographic observations revealed that both the rafting behavior and topological inversion behavior of γ/γ′ microstructure occurred during the cyclic creep tests. The specific connectivity number of the γ′ phase NA (γ′) was introduced to assess the extent of these microstructure evolutions, which was found to be related to the loading cyclic numbers and stress levels. Then a parameter of normalized cyclic number Tr was proposed to consider the contribution of these two factors. The extent of microstructure evolution was observed increasing with the normalized cyclic number. And the relationship between evaluation parameters NA (γ′) and Tr was proved to follow an asymptotic equation. The finite element model that established in the paper assisted to qualitatively analyze the rafting or topological inversion process. It successfully predicted the cyclic lives and acquired the normalized cyclic number Tr. The magnitude and distribution gradient of principal stress field in finite element model effectively account for rafting behavior under different stress states. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy |
remote_bool |
true |
author2 |
Wang, X.M. Yue, Z.F. |
author2Str |
Wang, X.M. Yue, Z.F. |
ppnlink |
32051398X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.mechmat.2020.103563 |
up_date |
2024-07-06T23:28:07.181Z |
_version_ |
1803874192256401408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004579631</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524125810.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230502s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.mechmat.2020.103563</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004579631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-6636(20)30605-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Z.Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The effect of stress state on rafting mechanism and cyclic creep behavior of Ni-base superalloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A three-stepped specimen of Ni-base superalloy was designed in the paper to conduct cyclic creep tests under different stress levels. The experiment aimed at studying the effect of loading cyclic numbers and the stress state on the rafting mechanism and the cyclic creep behavior. The design of three-stepped specimen can help to simultaneously analyze the extent of microstructure evolution under different stress states, which included uniaxial states in gauge sections and multiaxial stress states in beveled sections. Metallographic observations revealed that both the rafting behavior and topological inversion behavior of γ/γ′ microstructure occurred during the cyclic creep tests. The specific connectivity number of the γ′ phase NA (γ′) was introduced to assess the extent of these microstructure evolutions, which was found to be related to the loading cyclic numbers and stress levels. Then a parameter of normalized cyclic number Tr was proposed to consider the contribution of these two factors. The extent of microstructure evolution was observed increasing with the normalized cyclic number. And the relationship between evaluation parameters NA (γ′) and Tr was proved to follow an asymptotic equation. The finite element model that established in the paper assisted to qualitatively analyze the rafting or topological inversion process. It successfully predicted the cyclic lives and acquired the normalized cyclic number Tr. The magnitude and distribution gradient of principal stress field in finite element model effectively account for rafting behavior under different stress states.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nickel-base superalloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic creep test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructure morphology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normalized cyclic number</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, X.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, Z.F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanics of materials</subfield><subfield code="d">Amsterdam : Elsevier, 1982</subfield><subfield code="g">149</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32051398X</subfield><subfield code="w">(DE-600)2013735-7</subfield><subfield code="w">(DE-576)259484806</subfield><subfield code="x">1872-7743</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield></datafield></record></collection>
|
score |
7.401348 |