Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals
Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine re...
Ausführliche Beschreibung
Autor*in: |
Shah, Syed Aamir Ali [verfasserIn] Zhang, Lei [verfasserIn] Bais, Abdul [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Neural networks - Amsterdam : Elsevier, 1988, 130, Seite 75-84 |
---|---|
Übergeordnetes Werk: |
volume:130 ; pages:75-84 |
DOI / URN: |
10.1016/j.neunet.2020.06.018 |
---|
Katalog-ID: |
ELV004600398 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV004600398 | ||
003 | DE-627 | ||
005 | 20230524162711.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230503s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neunet.2020.06.018 |2 doi | |
035 | |a (DE-627)ELV004600398 | ||
035 | |a (ELSEVIER)S0893-6080(20)30233-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Shah, Syed Aamir Ali |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient’s limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99 . 2 % ( + 0 . 52 % ) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances. | ||
650 | 4 | |a Convolutional neural network | |
650 | 4 | |a Long short-term memory | |
650 | 4 | |a Chaotic systems | |
650 | 4 | |a Parkinson disease | |
650 | 4 | |a Embedding reconstruction | |
650 | 4 | |a Electroencephalogram | |
700 | 1 | |a Zhang, Lei |e verfasserin |4 aut | |
700 | 1 | |a Bais, Abdul |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural networks |d Amsterdam : Elsevier, 1988 |g 130, Seite 75-84 |h Online-Ressource |w (DE-627)302468536 |w (DE-600)1491372-0 |w (DE-576)07971997X |x 1879-2782 |7 nnns |
773 | 1 | 8 | |g volume:130 |g pages:75-84 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |
951 | |a AR | ||
952 | |d 130 |h 75-84 |
author_variant |
s a a s saa saas l z lz a b ab |
---|---|
matchkey_str |
article:18792782:2020----::yaiassebsdopcdehbintokocasfctooprisn |
hierarchy_sort_str |
2020 |
bklnumber |
54.72 |
publishDate |
2020 |
allfields |
10.1016/j.neunet.2020.06.018 doi (DE-627)ELV004600398 (ELSEVIER)S0893-6080(20)30233-1 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Shah, Syed Aamir Ali verfasserin aut Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient’s limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99 . 2 % ( + 0 . 52 % ) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances. Convolutional neural network Long short-term memory Chaotic systems Parkinson disease Embedding reconstruction Electroencephalogram Zhang, Lei verfasserin aut Bais, Abdul verfasserin aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 130, Seite 75-84 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:130 pages:75-84 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 130 75-84 |
spelling |
10.1016/j.neunet.2020.06.018 doi (DE-627)ELV004600398 (ELSEVIER)S0893-6080(20)30233-1 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Shah, Syed Aamir Ali verfasserin aut Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient’s limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99 . 2 % ( + 0 . 52 % ) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances. Convolutional neural network Long short-term memory Chaotic systems Parkinson disease Embedding reconstruction Electroencephalogram Zhang, Lei verfasserin aut Bais, Abdul verfasserin aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 130, Seite 75-84 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:130 pages:75-84 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 130 75-84 |
allfields_unstemmed |
10.1016/j.neunet.2020.06.018 doi (DE-627)ELV004600398 (ELSEVIER)S0893-6080(20)30233-1 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Shah, Syed Aamir Ali verfasserin aut Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient’s limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99 . 2 % ( + 0 . 52 % ) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances. Convolutional neural network Long short-term memory Chaotic systems Parkinson disease Embedding reconstruction Electroencephalogram Zhang, Lei verfasserin aut Bais, Abdul verfasserin aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 130, Seite 75-84 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:130 pages:75-84 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 130 75-84 |
allfieldsGer |
10.1016/j.neunet.2020.06.018 doi (DE-627)ELV004600398 (ELSEVIER)S0893-6080(20)30233-1 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Shah, Syed Aamir Ali verfasserin aut Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient’s limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99 . 2 % ( + 0 . 52 % ) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances. Convolutional neural network Long short-term memory Chaotic systems Parkinson disease Embedding reconstruction Electroencephalogram Zhang, Lei verfasserin aut Bais, Abdul verfasserin aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 130, Seite 75-84 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:130 pages:75-84 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 130 75-84 |
allfieldsSound |
10.1016/j.neunet.2020.06.018 doi (DE-627)ELV004600398 (ELSEVIER)S0893-6080(20)30233-1 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Shah, Syed Aamir Ali verfasserin aut Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient’s limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99 . 2 % ( + 0 . 52 % ) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances. Convolutional neural network Long short-term memory Chaotic systems Parkinson disease Embedding reconstruction Electroencephalogram Zhang, Lei verfasserin aut Bais, Abdul verfasserin aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 130, Seite 75-84 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:130 pages:75-84 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 130 75-84 |
language |
English |
source |
Enthalten in Neural networks 130, Seite 75-84 volume:130 pages:75-84 |
sourceStr |
Enthalten in Neural networks 130, Seite 75-84 volume:130 pages:75-84 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Convolutional neural network Long short-term memory Chaotic systems Parkinson disease Embedding reconstruction Electroencephalogram |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural networks |
authorswithroles_txt_mv |
Shah, Syed Aamir Ali @@aut@@ Zhang, Lei @@aut@@ Bais, Abdul @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
302468536 |
dewey-sort |
14 |
id |
ELV004600398 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004600398</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162711.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neunet.2020.06.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004600398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0893-6080(20)30233-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shah, Syed Aamir Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient’s limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99 . 2 % ( + 0 . 52 % ) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long short-term memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parkinson disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embedding reconstruction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroencephalogram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bais, Abdul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural networks</subfield><subfield code="d">Amsterdam : Elsevier, 1988</subfield><subfield code="g">130, Seite 75-84</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468536</subfield><subfield code="w">(DE-600)1491372-0</subfield><subfield code="w">(DE-576)07971997X</subfield><subfield code="x">1879-2782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:130</subfield><subfield code="g">pages:75-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">130</subfield><subfield code="h">75-84</subfield></datafield></record></collection>
|
author |
Shah, Syed Aamir Ali |
spellingShingle |
Shah, Syed Aamir Ali ddc 004 bkl 54.72 misc Convolutional neural network misc Long short-term memory misc Chaotic systems misc Parkinson disease misc Embedding reconstruction misc Electroencephalogram Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals |
authorStr |
Shah, Syed Aamir Ali |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302468536 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2782 |
topic_title |
004 DE-600 54.72 bkl Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals Convolutional neural network Long short-term memory Chaotic systems Parkinson disease Embedding reconstruction Electroencephalogram |
topic |
ddc 004 bkl 54.72 misc Convolutional neural network misc Long short-term memory misc Chaotic systems misc Parkinson disease misc Embedding reconstruction misc Electroencephalogram |
topic_unstemmed |
ddc 004 bkl 54.72 misc Convolutional neural network misc Long short-term memory misc Chaotic systems misc Parkinson disease misc Embedding reconstruction misc Electroencephalogram |
topic_browse |
ddc 004 bkl 54.72 misc Convolutional neural network misc Long short-term memory misc Chaotic systems misc Parkinson disease misc Embedding reconstruction misc Electroencephalogram |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Neural networks |
hierarchy_parent_id |
302468536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural networks |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X |
title |
Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals |
ctrlnum |
(DE-627)ELV004600398 (ELSEVIER)S0893-6080(20)30233-1 |
title_full |
Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals |
author_sort |
Shah, Syed Aamir Ali |
journal |
Neural networks |
journalStr |
Neural networks |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
75 |
author_browse |
Shah, Syed Aamir Ali Zhang, Lei Bais, Abdul |
container_volume |
130 |
class |
004 DE-600 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Shah, Syed Aamir Ali |
doi_str_mv |
10.1016/j.neunet.2020.06.018 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
dynamical system based compact deep hybrid network for classification of parkinson disease related eeg signals |
title_auth |
Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals |
abstract |
Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient’s limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99 . 2 % ( + 0 . 52 % ) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances. |
abstractGer |
Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient’s limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99 . 2 % ( + 0 . 52 % ) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances. |
abstract_unstemmed |
Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient’s limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99 . 2 % ( + 0 . 52 % ) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals |
remote_bool |
true |
author2 |
Zhang, Lei Bais, Abdul |
author2Str |
Zhang, Lei Bais, Abdul |
ppnlink |
302468536 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.neunet.2020.06.018 |
up_date |
2024-07-06T23:32:16.190Z |
_version_ |
1803874453361262592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV004600398</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162711.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230503s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neunet.2020.06.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV004600398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0893-6080(20)30233-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shah, Syed Aamir Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electroencephalogram (EEG) signals accumulate the brain’s spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. The anatomy of the brain is altered when dopamine releasing neurons die because of Parkinson Disease (PD), a neurodegenerative disorder. The resulting alterations force synchronized neuronal activity in β frequency components deep within motor region of the brain. This synchronization in the motor region affects the dynamical behavior of the brain activities, which induce motor related impairments in patient’s limbs. Identification of reliable bio-markers for PD is active research area since there are no tests or scans to diagnose PD. We use embedding reconstruction, a tool from chaos theory, to highlight PD-related alterations in dynamical properties of EEG and present it as a potentially reliable bio-marker for PD related classification. We use Individual Component Analysis (ICA) to demonstrate that the strengthened synchronizations can be cumulatively collected from EEG channels over the motor region of the brain. We use this information to select the 12 EEG channels for classification of On and Off medication PD patients. Additionally, there is the strong synchronization between amplitude of higher frequency components and phase of β components for PD patients. This information is used to improve the performance of this classification. We apply embedding reconstruction to design a new architecture of a deep neural network called Dynamical system Generated Hybrid Network. We report that this network outperforms the state of the art in terms of classification accuracy of 99 . 2 % ( + 0 . 52 % ) with approximately 24% of the computational resources. Apart from classification accuracy, we use well known statistical measures like specificity, sensitivity, Matthews Correlation Coefficient (MCC), F1 score, and Cohen Kappa score for the analysis and comparison of classification performances.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long short-term memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parkinson disease</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embedding reconstruction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroencephalogram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bais, Abdul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural networks</subfield><subfield code="d">Amsterdam : Elsevier, 1988</subfield><subfield code="g">130, Seite 75-84</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468536</subfield><subfield code="w">(DE-600)1491372-0</subfield><subfield code="w">(DE-576)07971997X</subfield><subfield code="x">1879-2782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:130</subfield><subfield code="g">pages:75-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">130</subfield><subfield code="h">75-84</subfield></datafield></record></collection>
|
score |
7.399356 |